A subsystem-independent generalization of entanglement

被引:228
作者
Barnum, H [1 ]
Knill, E [1 ]
Ortiz, G [1 ]
Somma, R [1 ]
Viola, L [1 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
关键词
D O I
10.1103/PhysRevLett.92.107902
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a generalization of entanglement based on the idea that entanglement is relative to a distinguished subspace of observables rather than a distinguished subsystem decomposition. A pure quantum state is entangled relative to such a subspace if its expectations are a proper mixture of those of other states. Many information-theoretic aspects of entanglement can be extended to this observable-based setting, suggesting new ways of measuring and classifying multipartite entanglement. By going beyond the distinguishable-subsystem framework, generalized entanglement also provides novel tools for probing quantum correlations in interacting many-body systems.
引用
收藏
页码:107902 / 1
页数:4
相关论文
共 19 条
[1]  
[Anonymous], 1993, SPEAKABLE UNSPEAKABL
[2]   Generalizations of entanglement based on coherent states and convex sets [J].
Barnum, H ;
Knill, E ;
Ortiz, G ;
Viola, L .
PHYSICAL REVIEW A, 2003, 68 (03) :21
[3]   Unveiling order behind complexity: Coexistence of ferromagnetism and Bose-Einstein condensation [J].
Batista, CD ;
Ortiz, G ;
Gubernatis, JE .
PHYSICAL REVIEW B, 2002, 65 (18) :1-4
[4]   Generalized Jordan-Wigner transformations [J].
Batista, CD ;
Ortiz, G .
PHYSICAL REVIEW LETTERS, 2001, 86 (06) :1082-1085
[5]   Effect algebras and statistical physical theories [J].
Beltrametti, EG ;
Bugajski, S .
JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (06) :3020-3030
[6]   Concentrating partial entanglement by local operations [J].
Bennett, CH ;
Bernstein, HJ ;
Popescu, S ;
Schumacher, B .
PHYSICAL REVIEW A, 1996, 53 (04) :2046-2052
[7]   MAXIMUM WEIGHT VECTORS POSSESS MINIMAL UNCERTAINTY [J].
DELBOURGO, R ;
FOX, JR .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1977, 10 (12) :L233-L235
[8]   Quantum correlations in systems of indistinguishable particles [J].
Eckert, K ;
Schliemann, J ;
Bruss, D ;
Lewenstein, M .
ANNALS OF PHYSICS, 2002, 299 (01) :88-127
[9]  
HHUMPHREYS JE, 1972, INTRO LIE ALGEBRAS R
[10]  
KLYACHKO A, QUANTPH0206012