Effect algebras and statistical physical theories

被引:24
作者
Beltrametti, EG
Bugajski, S
机构
[1] IST NAZL FIS NUCL, SEZ GENOVA, I-16146 GENOA, ITALY
[2] SILESIAN UNIV, INST PHYS, PL-40007 KATOWICE, POLAND
关键词
D O I
10.1063/1.532031
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The dichotomic physical quantities of a physical system can be naturally hosted in a mathematical structure, called effect algebra, of which orthomodular posets and Boolean algebras are particular examples. We examine how effect algebras arise inside statistical physical theories and, conversely, we study to what extent an effect algebra can be taken as a primitive structure on which a satisfactory statistical physical model equipped with a convex set of states can be constructed. (C) 1997 American Institute of Physics.
引用
收藏
页码:3020 / 3030
页数:11
相关论文
共 32 条
[1]  
Beltrametti E. G., 1981, The Logic of Quantum Mechanics
[2]   A CLASSICAL EXTENSION OF QUANTUM-MECHANICS [J].
BELTRAMETTI, EG ;
BUGAJSKI, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (12) :3329-3343
[3]   DECOMPOSABILITY OF MIXED STATES INTO PURE STATES AND RELATED PROPERTIES [J].
BELTRAMETTI, EG ;
BUGAJSKI, S .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1993, 32 (12) :2235-2244
[4]  
BENNETT MK, IN PRESS ADV APPL MA
[5]   Fundamentals of fuzzy probability theory [J].
Bugajski, S .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1996, 35 (11) :2229-2244
[6]  
Bugajski S., 1994, Reports on Mathematical Physics, V34, P235, DOI 10.1016/0034-4877(94)90039-6
[7]  
BUGAJSKI S, IN PRESS REP MATH PH
[8]   CONCEPTS OF COARSE GRAINING IN QUANTUM-MECHANICS [J].
BUSCH, P ;
QUADT, R .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1993, 32 (12) :2261-2269
[9]  
Busch P., 1995, OPERATIONAL QUANTUM, DOI DOI 10.1007/978-3-540-49239-9
[10]   SPECTRAL PROPERTIES OF OBSERVABLES AND CONVEX MAPPINGS IN QUANTUM-MECHANICS [J].
CASSINELLI, G ;
LAHTI, PJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (12) :5468-5475