Entanglement in spin chains and lattices with long-range Ising-type interactions -: art. no. 097203

被引:108
作者
Dür, W
Hartmann, L
Hein, M
Lewenstein, M
Briegel, HJ
机构
[1] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria
[2] Leibniz Univ Hannover, Inst Theoret Phys, D-30167 Hannover, Germany
[3] Austrian Acad Sci, Inst Quantenopt & Quanteninformat, Innsbruck, Austria
关键词
D O I
10.1103/PhysRevLett.94.097203
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider N initially disentangled spins, embedded in a ring or d-dimensional lattice of arbitrary geometry, which interact via some long-range Ising-type interaction. We investigate relations between entanglement properties of the resulting states and the distance dependence of the interaction in the limit N -> infinity. We provide a sufficient condition when bipartite entanglement between blocks of L neighboring spins and the remaining system saturates and determine S-L analytically for special configurations. We find an unbounded increase of S-L as well as diverging correlation and entanglement length under certain circumstances. For arbitrarily large N, we can efficiently calculate all quantities associated with reduced density operators of up to ten particles.
引用
收藏
页数:4
相关论文
共 24 条
[1]  
Brennen GK, 2003, QUANTUM INF COMPUT, V3, P619
[2]   Quantum logic gates in optical lattices [J].
Brennen, GK ;
Caves, CM ;
Jessen, PS ;
Deutsch, IH .
PHYSICAL REVIEW LETTERS, 1999, 82 (05) :1060-1063
[3]   A scalable quantum computer with ions in an array of microtraps [J].
Cirac, JI ;
Zoller, P .
NATURE, 2000, 404 (6778) :579-581
[4]   Entanglement in a valence-bond solid state [J].
Fan, H ;
Korepin, V ;
Roychowdhury, V .
PHYSICAL REVIEW LETTERS, 2004, 93 (22)
[5]   Multiparty entanglement in graph states [J].
Hein, M ;
Eisert, J ;
Briegel, HJ .
PHYSICAL REVIEW A, 2004, 69 (06) :062311-1
[6]  
Horn RA., 2013, Topics in Matrix Analysis, V2nd ed, DOI DOI 10.1017/CBO9780511840371
[7]  
Jané E, 2003, QUANTUM INF COMPUT, V3, P15
[8]  
Kurizki G, 2002, LECT NOTES PHYS, V602, P369
[9]  
Latorre JI, 2004, QUANTUM INF COMPUT, V4, P48
[10]  
Laustsen T, 2003, QUANTUM INF COMPUT, V3, P64