Assessment of the ATP binding properties of Hsp90

被引:81
作者
Jakob, U
Scheibel, T
Bose, S
Reinstein, J
Buchner, J
机构
[1] UNIV REGENSBURG,INST BIOPHYS & PHYS BIOCHEM,D-93040 REGENSBURG,GERMANY
[2] MAX PLANCK INST MOL PHYSIOL,PHYS BIOCHEM ABT,D-44139 DORTMUND,GERMANY
关键词
D O I
10.1074/jbc.271.17.10035
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Hsp90, one of the most prominent proteins in eucaryotic cells under physiological and stress conditions, chaperones protein folding reactions in an ATP-independent way. Surprisingly, ATP binding and ATPase activity of Hsp90 has been reported by several groups. To clarify this important issue, we have reinvestigated the potential ATP binding properties and ATPase activity of highly purified Hsp90 using a number of different techniques. Hsp90 was compared to the well characterized ATP-binding chaperone Hsc70 and to two control proteins, immunoglobulin G and bovine serum albumin, that are known to not bind ATP. Hsp90 behaved very similarly to the non-ATP-binding proteins and very differently from the ATP-binding protein Hsc70. Like bovine serum albumin and immunoglobulin G, Hsp90 (i) did not bind to immobilized ATP, (ii) could not be specifically photocross-linked with azido-ATP, (iii) failed to exhibit significant changes in intrinsic protein fluorescence upon ATP addition, and (iv) did not bind to three fluorescent ADP analogues. In contrast, Hsc70 strongly bound ATP and ADP, specifically cross-linked with azido-ATP, and exhibited major shifts in fluorescence upon addition of ATP. Finally, reexamination of the amino acid sequence of Hsp90 failed to reveal any significant homologies to known ATP-binding motifs. Taken together, we conclude that highly purified Hsp90 does not bind ATP. Weak ATPase activities associated with Hsp90 preparations may be due to minor impurities or kinases copurifying with Hsp90.
引用
收藏
页码:10035 / 10041
页数:7
相关论文
共 37 条
  • [1] CORRECTION FOR LIGHT-ABSORPTION IN FLUORESCENCE STUDIES OF PROTEIN-LIGAND INTERACTIONS
    BIRDSALL, B
    KING, RW
    WHEELER, MR
    LEWIS, CA
    GOODE, SR
    DUNLAP, RB
    ROBERTS, GCK
    [J]. ANALYTICAL BIOCHEMISTRY, 1983, 132 (02) : 353 - 361
  • [2] HOLDEM AND FOLDEM - CHAPERONES AND SIGNAL-TRANSDUCTION
    BOHEN, SP
    KRALLI, A
    YAMAMOTO, KR
    [J]. SCIENCE, 1995, 268 (5215) : 1303 - 1304
  • [3] BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
  • [4] Supervising the fold: Functional principles of molecular chaperones
    Buchner, J
    [J]. FASEB JOURNAL, 1996, 10 (01) : 10 - 19
  • [5] CHIN DT, 1988, J BIOL CHEM, V263, P11718
  • [6] CSERMELY P, 1991, J BIOL CHEM, V266, P4943
  • [7] CSERMELY P, 1993, J BIOL CHEM, V268, P1901
  • [8] HOLLNEUGEBAUER B, 1992, BIOCHEMISTRY-US, V30, P16009
  • [9] HEAT-SHOCK PROTEIN-90 STRONGLY STIMULATES THE BINDING OF PURIFIED ESTROGEN-RECEPTOR TO ITS RESPONSIVE ELEMENT
    INANO, K
    CURTIS, SW
    KORACH, KS
    OMATA, S
    HORIGOME, T
    [J]. JOURNAL OF BIOCHEMISTRY, 1994, 116 (04) : 759 - 766
  • [10] ASSISTING SPONTANEITY - THE ROLE OF HSP90 AND SMALL HSPS AS MOLECULAR CHAPERONES
    JAKOB, U
    BUCHNER, J
    [J]. TRENDS IN BIOCHEMICAL SCIENCES, 1994, 19 (05) : 205 - 211