mRNA enrichment protocols determine the quantification characteristics of external RNA spike-in controls in RNA-Seq studies

被引:28
作者
Qing Tao [1 ]
Yu Ying [1 ]
Du TingTing [1 ]
Shi LeMing [1 ]
机构
[1] Fudan Univ, Sch Pharm, Ctr Pharmacogen, Shanghai 201203, Peoples R China
关键词
RNA-Seq; External RNA Control Consortium (ERCC); MAQC/SEQC; mRNA enrichment protocol; quality control; reproducibility; quantification bias; poly(A) versus RiboZero; REPRODUCIBILITY; VARIABILITY; CONSORTIUM;
D O I
10.1007/s11427-013-4437-9
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
RNA-Seq promises to be used in clinical settings as a gene-expression profiling tool; however, questions about its variability and biases remain and need to be addressed. Thus, RNA controls with known concentrations and sequence identities originally developed by the External RNA Control Consortium (ERCC) for microarray and qPCR platforms have recently been proposed for RNA-Seq platforms, but only with a limited number of samples. In this study, we report our analysis of RNA-Seq data from 92 ERCC controls spiked in a diverse collection of 447 RNA samples from eight ongoing studies involving five species (human, rat, mouse, chicken, and Schistosoma japonicum) and two mRNA enrichment protocols, i.e., poly(A) and RiboZero. The entire collection of datasets consisted of 15650143175 short sequence reads, 131603796 (i.e., 0.84%) of which were mapped to the 92 ERCC references. The overall ERCC mapping ratio of 0.84% is close to the expected value of 1.0% when assuming a 2.0% mRNA fraction in total RNA, but showed a difference of 2.8-fold across studies and 4.3-fold among samples from the same study with one tissue type. This level of fluctuation may prevent the ERCC controls from being used for cross-sample normalization in RNA-Seq. Furthermore, we observed striking biases of quantification between poly(A) and RiboZero which are transcript-specific. For example, ERCC-00116 showed a 7.3-fold under-enrichment in poly(A) compared to RiboZero. Extra care is needed in integrative analysis of multiple datasets and technical artifacts of protocol differences should not be taken as true biological findings.
引用
收藏
页码:134 / 142
页数:9
相关论文
共 23 条
[1]  
[Anonymous], MM16A CLSI
[2]   The external RNA controls consortium: a progress report [J].
Baker, SC ;
Bauer, SR ;
Beyer, RP ;
Brenton, JD ;
Bromley, B ;
Burrill, J ;
Causton, H ;
Conley, MP ;
Elespuru, R ;
Fero, M ;
Foy, C ;
Fuscoe, J ;
Gao, XL ;
Gerhold, DL ;
Gilles, P ;
Goodsaid, F ;
Guo, X ;
Hackett, J ;
Hockett, RD ;
Ikonomi, P ;
Irizarry, RA ;
Kawasaki, ES ;
Kaysser-Kranich, T ;
Kerr, K ;
Kiser, G ;
Koch, WH ;
Lee, KY ;
Liu, CM ;
Liu, ZL ;
Lucas, A ;
Manohar, CF ;
Miyada, G ;
Modrusan, Z ;
Parkes, H ;
Puri, RK ;
Reid, L ;
Ryder, TB ;
Salit, M ;
Samaha, RR ;
Scherf, U ;
Sendera, TJ ;
Setterquist, RA ;
Shi, LM ;
Shippy, R ;
Soriano, JV ;
Wagar, EA ;
Warrington, JA ;
Williams, M ;
Wilmer, F ;
Wilson, M .
NATURE METHODS, 2005, 2 (10) :731-734
[3]   Stem cell transcriptome profiling via massive-scale mRNA sequencing [J].
Cloonan, Nicole ;
Forrest, Alistair R. R. ;
Kolle, Gabriel ;
Gardiner, Brooke B. A. ;
Faulkner, Geoffrey J. ;
Brown, Mellissa K. ;
Taylor, Darrin F. ;
Steptoe, Anita L. ;
Wani, Shivangi ;
Bethel, Graeme ;
Robertson, Alan J. ;
Perkins, Andrew C. ;
Bruce, Stephen J. ;
Lee, Clarence C. ;
Ranade, Swati S. ;
Peckham, Heather E. ;
Manning, Jonathan M. ;
McKernan, Kevin J. ;
Grimmond, Sean M. .
NATURE METHODS, 2008, 5 (07) :613-619
[4]   Evaluation of external RNA controls for the standardisation of gene expression biomarker measurements [J].
Devonshire, Alison S. ;
Elaswarapu, Ramnath ;
Foy, Carole A. .
BMC GENOMICS, 2010, 11
[5]   Synthetic spike-in standards for RNA-seq experiments [J].
Jiang, Lichun ;
Schlesinger, Felix ;
Davis, Carrie A. ;
Zhang, Yu ;
Li, Renhua ;
Salit, Marc ;
Gingeras, Thomas R. ;
Oliver, Brian .
GENOME RESEARCH, 2011, 21 (09) :1543-1551
[6]   Characterization of in vitro transcription amplification linearity and variability in the low copy number regime using External RNA Control Consortium (ERCC) spike-ins [J].
Kralj, Jason G. ;
Salit, Marc L. .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2013, 405 (01) :315-320
[7]  
Langmead B, 2012, NAT METHODS, V9, P357, DOI [10.1038/NMETH.1923, 10.1038/nmeth.1923]
[8]   Revisiting Global Gene Expression Analysis [J].
Loven, Jakob ;
Orlando, David A. ;
Sigova, Alla A. ;
Lin, Charles Y. ;
Rahl, Peter B. ;
Burge, Christopher B. ;
Levens, David L. ;
Lee, Tong Ihn ;
Young, Richard A. .
CELL, 2012, 151 (03) :476-482
[9]   RNA-seq: An assessment of technical reproducibility and comparison with gene expression arrays [J].
Marioni, John C. ;
Mason, Christopher E. ;
Mane, Shrikant M. ;
Stephens, Matthew ;
Gilad, Yoav .
GENOME RESEARCH, 2008, 18 (09) :1509-1517
[10]   RNA-seq: technical variability and sampling [J].
McIntyre, Lauren M. ;
Lopiano, Kenneth K. ;
Morse, Alison M. ;
Amin, Victor ;
Oberg, Ann L. ;
Young, Linda J. ;
Nuzhdin, Sergey V. .
BMC GENOMICS, 2011, 12