Sharp asymptotic behavior for wetting models in (1+1)-dimension

被引:21
作者
Caravenna, F
Giacomin, G
Zambotti, L
机构
[1] Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland
[2] Univ Paris 07, Lab Probabil, CNRS, UMR 7599, F-75251 Paris 05, France
[3] UFR Math, F-75251 Paris 05, France
[4] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy
来源
ELECTRONIC JOURNAL OF PROBABILITY | 2006年 / 11卷
关键词
wetting transition; critical wetting; delta-pinning model; renewal theory; fluctuation theory for random walks;
D O I
10.1214/EJP.v11-320
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider continuous and discrete (1+1)-dimensional wetting models which undergo a localization/ delocalization phase transition. Using a simple approach based on Renewal Theory we determine the precise asymptotic behavior of the partition function, from which we obtain the scaling limits of the models and an explicit construction of the infinite volume measure in all regimes, including the critical one.
引用
收藏
页码:345 / 362
页数:18
相关论文
共 20 条
[1]  
Alili L., 1999, STOCHASTICS STOCHAST, V66, P87
[2]  
[Anonymous], 2003, APPL MATH
[3]  
[Anonymous], 1989, REGULAR VARIATION
[4]  
Bertoin J., 1994, Ann. Prob, V22, P2152
[5]  
BRYNJONES A, IN PRESS P LONDON MA
[7]  
CARAVENNA F, 2005, MATHPR0507178
[8]  
CARAVENNA F, UNPUB INVARIANCE PRI
[9]   Scaling limits of equilibrium wetting models in (1+1)-dimension [J].
Deuschel, JD ;
Giacomin, G ;
Zambotti, L .
PROBABILITY THEORY AND RELATED FIELDS, 2005, 132 (04) :471-500
[10]   ON THE JOINT DISTRIBUTION OF LADDER VARIABLES OF RANDOM-WALK [J].
DONEY, RA ;
GREENWOOD, PE .
PROBABILITY THEORY AND RELATED FIELDS, 1993, 94 (04) :457-472