Efficient GPU implementation of a two waves TVD-WAF method for the two-dimensional one layer shallow water system on structured meshes

被引:64
作者
de la Asuncion, Marc [1 ]
Castro, Manuel J. [3 ]
Fernandez-Nieto, E. D. [2 ]
Mantas, Jose M. [1 ]
Ortega Acosta, Sergio [3 ]
Manuel Gonzalez-Vida, Jose [4 ]
机构
[1] Univ Granada, Dpto Lenguajes Sistemas Informat, E-18071 Granada, Spain
[2] Univ Seville, Dpto Matemat Aplicada I, Seville, Spain
[3] Univ Malaga, Dpto Anal Matemat, E-29071 Malaga, Spain
[4] Univ Malaga, Dpto Matemat Aplicada, E-29071 Malaga, Spain
关键词
Finite volume schemes; TVD-WAF scheme; CUDA; Shallow-water equations; NONCONSERVATIVE HYPERBOLIC SYSTEMS; AVERAGE FLUX METHOD; CONSERVATION-LAWS; EQUATIONS; SCHEMES; FLOWS; PROPERTY;
D O I
10.1016/j.compfluid.2012.01.012
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The numerical solutions of shallow water equations are useful for applications related to geophysical flows that usually take place in large computational domains and could require real time calculation. Therefore, parallel versions of accurate and efficient numerical solvers for high performance platforms are needed to be able to deal with these simulation scenarios in reasonable times. In this paper we present an efficient CUDA implementation of a first and second order HLL methods and a two-waves TVD-WAF one. We propose to write all these methods under a common framework, such as, their CUDA implementations share the same structure. In particular, the reformulation of TVD-WAF numerical flux and the improved definition of the flux limiter allows us to obtain a more robust solver in situations like wet/dry fronts. Finally, some numerical tests are presented showing that the TVD-WAF method is slightly slower that the first order HLL method and two times faster than the second order HLL method, but it provides numerical results almost as accurate as the second order HLL scheme. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:441 / 452
页数:12
相关论文
共 29 条
  • [1] A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows
    Audusse, E
    Bouchut, F
    Bristeau, MO
    Klein, R
    Perthame, B
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 25 (06) : 2050 - 2065
  • [2] On WAF-type schemes for multidimensional hyperbolic conservation laws
    Billett, SJ
    Toro, EF
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 130 (01) : 1 - 24
  • [3] Finite Volume Evolution Galerkin Methods for the Shallow Water Equations with Dry Beds
    Bollermann, Andreas
    Noelle, Sebastian
    Lukacova-Medvid'ova, Maria
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2011, 10 (02) : 371 - 404
  • [4] Finite-volume model for shallow-water flooding of arbitrary topography
    Bradford, SF
    Sanders, BF
    [J]. JOURNAL OF HYDRAULIC ENGINEERING, 2002, 128 (03) : 289 - 298
  • [5] Brodtkorb A, 2011, COMPUTING VISUALIZAT, P1
  • [6] High Order Extensions of Roe Schemes for Two-Dimensional Nonconservative Hyperbolic Systems
    Castro, M. J.
    Fernandez-Nieto, E. D.
    Ferreiro, A. M.
    Garcia-Rodriguez, J. A.
    Pares, C.
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2009, 39 (01) : 67 - 114
  • [7] GPU computing for shallow water flow simulation based on finite volume schemes
    Castro, Manuel J.
    Ortega, Sergio
    de la Asuncion, Marc
    Mantas, Jose M.
    Gallardo, Jose M.
    [J]. COMPTES RENDUS MECANIQUE, 2011, 339 (2-3): : 165 - 184
  • [8] The numerical treatment of wet/dry fronts in shallow flows:: Application to one-layer and two-layer systems
    Castro, MJ
    Ferreiro, AMF
    García-Rodríguez, JA
    González-Vida, JM
    Macías, J
    Parés, C
    Vázquez-Cendón, ME
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2005, 42 (3-4) : 419 - 439
  • [9] SIMPLIFIED 2ND-ORDER GODUNOV-TYPE METHODS
    DAVIS, SF
    [J]. SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1988, 9 (03): : 445 - 473
  • [10] de la Asuncion M, J PARALLEL IN PRESS, DOI [10.1016/j.jpdc.2011.07.012, DOI 10.1016/JJPDC.2011.07.012]