Polyaniline-polypyrrole nanograined composite via electrostatic adsorption for high performance electrochemical supercapacitors

被引:63
作者
Dubal, Deepak P. [1 ,2 ]
Patil, Sandip V. [2 ]
Gund, G. S. [2 ]
Lokhande, Chandrakant D. [2 ]
机构
[1] Tech Univ Chemnitz, Inst Chem, AG Elektrochem, D-09107 Chemnitz, Germany
[2] Shivaji Univ, Dept Phys, Thin Film Phys Lab, Kolhapur 416004, MS, India
关键词
Chemical processes; Polymers; Polymerization; Nanostructure; Energy; CARBON NANOTUBE; ELECTRODE MATERIAL; FILMS; POLYMER; ARCHITECTURE; FABRICATION; NANOFIBERS; NETWORK;
D O I
10.1016/j.jallcom.2012.10.031
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We demonstrate a novel approach for the preparation of layered Polyaniline-polypyrrole (PANI-PPy) nanocomposite via simplest oxidative chemical polymerization. The approach is conceptualized on the basis of the electrostatic interactions between cationic source (aniline/pyrrole with H2SO4) and anionic source (ammonium persulfate) in double distilled water. The investigation describes advantages of facile successive ionic layer adsorption and reaction (SILAR) for depositing nanograined PANI-PPy thin film onto cost-effective large area stainless steel substrates. The physico-chemical characteristics of deposited films are studied via analysis of structural, morphological, surface wettability and Brunauer-Emmett-Teller (BET) analysis. A PANI-PPy nanocomposite prepared from this approach exhibited an excellent electro-capacitive performance with a high specific capacitance over 737 F/g at 5 mV s(-1) scan rate. Impedance measurements suggest that the nanograined PANI-PPy electrodes are promising for the next generation high performance electrochemical supercapacitors. The simple method described here opens up a generalized route to make a wide range of PANI-PPy based nanocomposite materials for applications beyond electrochemical energy storage. (C) 2012 Elsevier B. V. All rights reserved.
引用
收藏
页码:240 / 247
页数:8
相关论文
共 47 条
[1]  
Bak S.M., 1984, J MATER CHEM, V2011, P21
[2]  
Chakane S., 2002, T SAEST, V37, P35
[3]   Fuzzy nanofibrous network of polyaniline electrode for supercapacitor application [J].
Dhawale, D. S. ;
Dubal, D. P. ;
Jamadade, V. S. ;
Salunkhe, R. R. ;
Lokhande, C. D. .
SYNTHETIC METALS, 2010, 160 (5-6) :519-522
[4]   Hydrophilic polyaniline nanofibrous architecture using electrosynthesis method for supercapacitor application [J].
Dhawale, D. S. ;
Salunkhe, R. R. ;
Jamadade, V. S. ;
Dubal, D. P. ;
Pawar, S. M. ;
Lokhande, C. D. .
CURRENT APPLIED PHYSICS, 2010, 10 (03) :904-909
[5]   Syntheses of polyaniline/ordered mesoporous carbon composites with interpenetrating framework and their electrochemical capacitive performance in alkaline solution [J].
Dou, Yu-Qian ;
Zhai, Yunpu ;
Liu, Haijing ;
Xia, Yongyao ;
Tu, Bo ;
Zhao, Dongyuan ;
Liu, Xiao-Xia .
JOURNAL OF POWER SOURCES, 2011, 196 (03) :1608-1614
[6]   High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition [J].
Du, Chunsheng ;
Pan, Ning .
NANOTECHNOLOGY, 2006, 17 (21) :5314-5318
[7]   Supercapacitors based on electrochemically deposited polypyrrole nanobricks [J].
Dubal, D. P. ;
Patil, S. V. ;
Kim, W. B. ;
Lokhande, C. D. .
MATERIALS LETTERS, 2011, 65 (17-18) :2628-2631
[8]   Two step novel chemical synthesis of polypyrrole nanoplates for supercapacitor application [J].
Dubal, D. P. ;
Patil, S. V. ;
Jagadale, A. D. ;
Lokhande, C. D. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 (32) :8183-8188
[9]   Porous polypyrrole clusters prepared by electropolymerization for a high performance supercapacitor [J].
Dubal, Deepak P. ;
Lee, Sang Ho ;
Kim, Jong Guk ;
Kim, Won Bae ;
Lokhande, Chandrakant D. .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (07) :3044-3052
[10]   Conversion of Chemically Prepared Interlocked Cubelike Mn3O4 to Birnessite MnO2 Using Electrochemical Cycling [J].
Dubal, Deepak P. ;
Dhawale, Dattatray S. ;
Salunkhe, Rahul R. ;
Lokhande, Chandrakant D. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (07) :A812-A817