Inference for Constrained Estimation of Tumor Size Distributions

被引:4
作者
Ghosh, Debashis [1 ,4 ]
Banerjee, Moulinath [2 ]
Biswas, Pinaki [3 ]
机构
[1] Penn State Univ, Huck Inst Life Sci, University Pk, PA 16802 USA
[2] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
[3] Pfizer, New York, NY 10017 USA
[4] Penn State Univ, Dept Stat, University Pk, PA 16802 USA
基金
美国国家卫生研究院;
关键词
Isotonic regression; Oncology; Pool-adjacent violators algorithm; Profile likelihood; Semiparametric information bound; Smoothing splines;
D O I
10.1111/j.1541-0420.2008.01001.x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In order to develop better treatment and screening programs for cancer prevention programs, it is important to be able to understand the natural history of the disease and what factors affect its progression. We focus on a particular framework first outlined by Kimmel and Flehinger (1991, Biometrics, 47, 987-1004) and in particular one of their limiting scenarios for analysis. Using an equivalence with a binary regression model, we characterize the nonparametric maximum likelihood estimation procedure for estimation of the tumor size distribution function and give associated asymptotic results. Extensions to semiparametric models and missing data are also described. Application to data from two cancer studies is used to illustrate the infinite-sample behavior of the procedure.
引用
收藏
页码:1009 / 1017
页数:9
相关论文
共 19 条
[1]   The benefits and limitations of sentinel lymph node biopsy [J].
Amersi F. ;
Hansen N.M. .
Current Treatment Options in Oncology, 2006, 7 (2) :141-151
[2]   AN EMPIRICAL DISTRIBUTION FUNCTION FOR SAMPLING WITH INCOMPLETE INFORMATION [J].
AYER, M ;
BRUNK, HD ;
EWING, GM ;
REID, WT ;
SILVERMAN, E .
ANNALS OF MATHEMATICAL STATISTICS, 1955, 26 (04) :641-647
[3]  
Banerjee M, 2001, ANN STAT, V29, P1699
[4]   Subsampling inference in cube root asymptotics with an application to Manski's maximum score estimator [J].
Delgado, MA ;
Rodríguez-Poo, JM ;
Wolf, M .
ECONOMICS LETTERS, 2001, 73 (02) :241-250
[5]   Modelling tumour biology-progression relationships in screening trials [J].
Ghosh, D .
STATISTICS IN MEDICINE, 2006, 25 (11) :1872-1884
[6]   Computing Chernoff's distribution [J].
Groeneboom, P ;
Wellner, JA .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2001, 10 (02) :388-400
[7]   Penalized regression with model-based penalties [J].
Heckman, NE ;
Ramsay, JO .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2000, 28 (02) :241-258
[8]   Case-control current status data [J].
Jewell, NP ;
van der Laan, M .
BIOMETRIKA, 2004, 91 (03) :529-541
[9]  
Keiding N, 1996, Lifetime Data Anal, V2, P119, DOI 10.1007/BF00128570
[10]   NONPARAMETRIC-ESTIMATION OF THE SIZE METASTASIS RELATIONSHIP IN SOLID CANCERS [J].
KIMMEL, M ;
FLEHINGER, BJ .
BIOMETRICS, 1991, 47 (03) :987-1004