The definition and measurement of the topological entropy per unit volume in parabolic PDEs

被引:24
作者
Collet, P [1 ]
Eckmann, JP
机构
[1] Ecole Polytech, Ctr Phys Theor, Lab CNRS UMR 7644, F-91128 Palaiseau, France
[2] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland
[3] Univ Geneva, Sect Math, CH-1211 Geneva 4, Switzerland
关键词
D O I
10.1088/0951-7715/12/3/002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define the topological entropy per unit volume in parabolic PDEs such as the complex Ginzburg-Landau equation, and show that it exists and is bounded by the upper Hausdorff dimension times the maximal expansion rate. We then give a constructive implementation of a bound on the inertial range of such equations. Using this bound, we are able to propose a finite sampling algorithm which allows (in principle) to measure this entropy from experimental data.
引用
收藏
页码:451 / 473
页数:23
相关论文
共 13 条
[1]  
ADLER R, 1965, T AM MATH SOC, V114, P390
[2]  
Boas R. P., 1954, PURE APPL MATH, V5
[3]  
BRIN M, 1983, LECT NOTES MATH, V1007, P30
[4]   Estimating the number of asymptotic degrees of freedom for nonlinear dissipative systems [J].
Cockburn, B ;
Jones, DA ;
Titi, ES .
MATHEMATICS OF COMPUTATION, 1997, 66 (219) :1073-1087
[5]   THE TIME-DEPENDENT AMPLITUDE EQUATION FOR THE SWIFT-HOHENBERG PROBLEM [J].
COLLET, P ;
ECKMANN, JP .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 132 (01) :139-153
[6]   THERMODYNAMIC LIMIT OF THE GINZBURG-LANDAU EQUATIONS [J].
COLLET, P .
NONLINEARITY, 1994, 7 (04) :1175-1190
[7]  
COLLET P, IN PRESS COMMUN MATH
[8]   ERGODIC-THEORY OF CHAOS AND STRANGE ATTRACTORS [J].
ECKMANN, JP ;
RUELLE, D .
REVIEWS OF MODERN PHYSICS, 1985, 57 (03) :617-656
[9]   The Cauchy problem in local spaces for the complex Ginzburg-Landau equation .2. Contraction methods [J].
Ginibre, J ;
Velo, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 187 (01) :45-79
[10]   ESTIMATION OF THE KOLMOGOROV-ENTROPY FROM A CHAOTIC SIGNAL [J].
GRASSBERGER, P ;
PROCACCIA, I .
PHYSICAL REVIEW A, 1983, 28 (04) :2591-2593