A point mutation within each of two ATP-binding motifs inactivates the functions of elongation factor 3

被引:11
作者
Yang, HM
Hamada, K
Terashima, H
Izuta, M
YamaguchiSihta, E
Kondoh, O
Satoh, H
Miyazaki, M
Arisawa, M
Miyamoto, C
Kitada, K
机构
[1] NIPPON ROCHE RES CTR,DEPT MYCOL,KAMAKURA,KANAGAWA 247,JAPAN
[2] NIPPON ROCHE RES CTR,DEPT SCREENING,KAMAKURA,KANAGAWA 247,JAPAN
[3] NAGOYA UNIV,SCH SCI,DEPT MOLEC BIOL,NAGOYA,AICHI 464,JAPAN
来源
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH | 1996年 / 1310卷 / 03期
关键词
elongation factor 3; ATPase; ATP-binding motif; expression; protein synthesis; plasmid shuffling;
D O I
10.1016/0167-4889(95)00179-4
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have investigated how point mutations in the two ATP-binding motifs (G(463)PNGCGK(469)ST and G(701)PNGAGK(707)ST) of elongation factor 3 (EF-3) affect ribosome-activated ATPase activity of EF-3, polyphenylalanine synthesis, and growth of Saccharomyces cerevisiae. The point mutation impaired the ribosome-activated ATPase activity of EF-3, when glycine(463 and 707) and lysine(469 and 707) were replaced with valine and arginine, respectively. Thus, each glycine and lysine residue in both ATP-binding motifs is indispensable for EF-3's binding with ATP and the ensuing generation of ribosome-activated ATPase activity. Additionally, the mutant EF-3s did not catalyze polyphenylalanine synthesis in vitro when each glycine (463 and 701) was replaced with valine. The mutant EF-3s did not support cell growth in TEF3-disrupted S. cerevisiae, when each lysine(469 and 707) and glycine(463) was replaced with arginine and valine, respectively. Thus, each of the two ATP-binding motifs of EF-3 is indispensable for the ribosome-activated ATPase activity of EF-3, which is required for protein synthesis and cell growth in S. cerevisiae.
引用
收藏
页码:303 / 308
页数:6
相关论文
共 10 条
[1]   TRANSLATION ELONGATION FACTOR-III - A FUNGUS-SPECIFIC TRANSLATION FACTOR [J].
BELFIELD, GP ;
TUITE, MF .
MOLECULAR MICROBIOLOGY, 1993, 9 (03) :411-418
[2]   A POSITIVE SELECTION FOR MUTANTS LACKING OROTIDINE-5'-PHOSPHATE DECARBOXYLASE ACTIVITY IN YEAST - 5-FLUORO-OROTIC ACID RESISTANCE [J].
BOEKE, JD ;
LACROUTE, F ;
FINK, GR .
MOLECULAR & GENERAL GENETICS, 1984, 197 (02) :345-346
[3]  
GIETZ RD, 1988, GENE, V65, P163
[4]   STRUCTURAL MODEL OF ATP-BINDING PROTEINS ASSOCIATED WITH CYSTIC-FIBROSIS, MULTIDRUG RESISTANCE AND BACTERIAL TRANSPORT [J].
HYDE, SC ;
EMSLEY, P ;
HARTSHORN, MJ ;
MIMMACK, MM ;
GILEADI, U ;
PEARCE, SR ;
GALLAGHER, MP ;
GILL, DR ;
HUBBARD, RE ;
HIGGINS, CF .
NATURE, 1990, 346 (6282) :362-365
[5]  
KAMATH A, 1989, J BIOL CHEM, V264, P15423
[6]   THE YEAST PEPTIDE ELONGATION FACTOR-III (EF-3) CARRIES AN ACTIVE-SITE FOR ATP HYDROLYSIS WHICH CAN INTERACT WITH VARIOUS NUCLEOSIDE TRIPHOSPHATES IN THE ABSENCE OF RIBOSOMES [J].
MIYAZAKI, M ;
URITANI, M ;
KAGIYAMA, H .
JOURNAL OF BIOCHEMISTRY, 1988, 104 (03) :445-450
[7]  
QIN SL, 1990, J BIOL CHEM, V265, P1903
[8]  
ROTHSTEIN RJ, 1983, METHOD ENZYMOL, V101, P202
[9]   THE P-LOOP - A COMMON MOTIF IN ATP-BINDING AND GTP-BINDING PROTEINS [J].
SARASTE, M ;
SIBBALD, PR ;
WITTINGHOFER, A .
TRENDS IN BIOCHEMICAL SCIENCES, 1990, 15 (11) :430-434
[10]   CHARACTERIZATION OF THE ATPASE AND GTPASE ACTIVITIES OF ELONGATION FACTOR-III (EF-3) PURIFIED FROM YEASTS [J].
URITANI, M ;
MIYAZAKI, M .
JOURNAL OF BIOCHEMISTRY, 1988, 103 (03) :522-530