Stabilization of nonlinear systems by use of semidefinite Lyapunov functions

被引:11
作者
Bensoubaya, M
Ferfera, A
Iggidr, A
机构
[1] INRIA Lorraine, CONGE Project, F-57045 Metz 01, France
[2] Univ Metz, CNRS, UPRESA 70 35, ISGMP, F-57045 Metz 01, France
关键词
nonlinear systems; stabilization; feedback; Lyapunov functions; semidefinite functions;
D O I
10.1016/S0893-9659(99)00095-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a sufficient condition for smooth stabilization of nonlinear control systems. This condition generalizes the well-known Jurdjevic-Quinn results in the sense that it uses nonnegative semidefinite Lyapunov functions rather than positive definite ones, and that it applies to nonaffine control systems. Stabilizing feedback is explicitly computed. (C) 1999 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:11 / 17
页数:7
相关论文
共 15 条
[1]  
Aeyels D., 1986, Theory and Applications of Nonlinear Control Systems, P93
[2]  
Bacciotti A., 1992, SERIES ADV MATH APPL
[3]  
Brockett R. W., 1983, DIFFERENTIAL GEOMETR, P181
[4]  
Carr J, 1982, Applications of centre manifold theory
[5]  
GAUTHIER JP, 1981, OUTILS MODELES MATH
[6]  
Hahn W., 1967, STABILITY MOTION
[7]   Semidefinite Lyapunov functions stability and stabilization [J].
Iggidr, A ;
Kalitine, B ;
Outbib, R .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 1996, 9 (02) :95-106
[8]   CONTROLLABILITY AND STABILITY [J].
JURDJEVIC, V ;
QUINN, JP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1978, 28 (03) :381-389
[9]   STABILIZABILITY OF THE ANGULAR VELOCITY OF A RIGID BODY REVISITED [J].
OUTBIB, R ;
SALLET, G .
SYSTEMS & CONTROL LETTERS, 1992, 18 (02) :93-98
[10]   GLOBAL STABILIZATION OF NONLINEAR CASCADE SYSTEMS [J].
SEIBERT, P ;
SUAREZ, R .
SYSTEMS & CONTROL LETTERS, 1990, 14 (04) :347-352