Stability in the presence of degeneracy and error estimation

被引:53
作者
Hager, WW [1 ]
Gowda, MS
机构
[1] Univ Florida, Dept Math, Gainesville, FL 32611 USA
[2] Univ Maryland Baltimore Cty, Dept Math & Stat, Baltimore, MD 21250 USA
关键词
stability analysis; perturbation theory; degenerate optimization; error estimation; quadratic program stability; merit functions;
D O I
10.1007/s101070050051
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Given an approximation to a local minimizer to a nonlinear optimization problem and to associated multipliers, we obtain a tight error estimate in terms of the violation of the first-order conditions. Our results apply to degenerate optimization problems where independence of the active constraint gradients and strict complementarity can be violated.
引用
收藏
页码:181 / 192
页数:12
相关论文
共 16 条
[1]   LIPSCHITZIAN STABILITY IN NONLINEAR CONTROL AND OPTIMIZATION [J].
DONTCHEV, AL ;
HAGER, WW .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1993, 31 (03) :569-603
[2]  
DONTCHEV AL, 1995, WELL POSEDNESS STABI, P95
[3]  
FACCHINEI F, 1996, ACCURATE IDENTIFICAT
[4]  
HAGER WW, 1997, CONVERGENCE WRIGHTS
[5]   ON APPROXIMATE SOLUTIONS OF SYSTEMS OF LINEAR INEQUALITIES [J].
HOFFMAN, AJ .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, 1952, 49 (04) :263-265
[6]  
KLATTE D, 1992, LECT NOTES ECON MATH, V378, P204
[7]  
KLATTE D, 1985, OPTIMIZATION, V16, P819, DOI DOI 10.1080/02331938508843080
[8]  
KLATTE D, 1987, PARAMETRIC OPTIMIZAT
[9]   FRITZ JOHN NECESSARY OPTIMALITY CONDITIONS IN PRESENCE OF EQUALITY AND INEQUALITY CONSTRAINTS [J].
MANGASARIAN, OL ;
FROMOVITZ, S .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1967, 17 (01) :37-+
[10]  
ROBINSON SM, 1981, MATH PROGRAM STUD, V14, P206, DOI 10.1007/BFb0120929