Stability in the presence of degeneracy and error estimation

被引:53
作者
Hager, WW [1 ]
Gowda, MS
机构
[1] Univ Florida, Dept Math, Gainesville, FL 32611 USA
[2] Univ Maryland Baltimore Cty, Dept Math & Stat, Baltimore, MD 21250 USA
关键词
stability analysis; perturbation theory; degenerate optimization; error estimation; quadratic program stability; merit functions;
D O I
10.1007/s101070050051
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Given an approximation to a local minimizer to a nonlinear optimization problem and to associated multipliers, we obtain a tight error estimate in terms of the violation of the first-order conditions. Our results apply to degenerate optimization problems where independence of the active constraint gradients and strict complementarity can be violated.
引用
收藏
页码:181 / 192
页数:12
相关论文
共 16 条
[11]  
ROBINSON SM, 1982, MATH PROGRAM STUD, V19, P200, DOI 10.1007/BFb0120989
[12]   STRONGLY REGULAR GENERALIZED EQUATIONS [J].
ROBINSON, SM .
MATHEMATICS OF OPERATIONS RESEARCH, 1980, 5 (01) :43-62
[13]   STABILITY THEORY FOR SYSTEMS OF INEQUALITIES .1. LINEAR-SYSTEMS [J].
ROBINSON, SM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1975, 12 (05) :754-769
[14]  
ROBINSON SM, 1973, PERTURBATIONS FINITE
[15]   A LIPSCHITZIAN CHARACTERIZATION OF CONVEX POLYHEDRA [J].
WALKUP, DW ;
WETS, RJB .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 23 (01) :167-&
[16]   Superlinear convergence of a stabilized SQP method to a degenerate solution [J].
Wright, SJ .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 1998, 11 (03) :253-275