Chemical and biological characteristics of physically uncomplexed organic matter

被引:358
作者
Gregorich, EG [1 ]
Beare, MH
Mckim, UF
Skjemstad, JO
机构
[1] Agr Canada, Cent Expt Farm, Ottawa, ON K1A 0C6, Canada
[2] New Zeland Inst Crop & Food Res, Christchurch, New Zealand
[3] CSIRO, Land & Water, Adelaide Lab, Glen Osmond, SA 5064, Australia
关键词
D O I
10.2136/sssaj2005.0116
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Physical fractionation methods are based on the premise that soil organic matter (SOM) can be divided into pools of functional relevance. Physically uncomplexed organic matter (OM) is isolated on the basis of particle size and/or density. Our objective here is to review research on the biological and chemical characteristics of physically uncomplexed OM that demonstrates its value (or otherwise) as a meaningful pool of SOM. Chemical characterization indicates that fractions isolated by size are not identical to those separated by density; even materials separated using variations of a particular fractionation method (i.e., different sizes or different densities) have different chemical and biological properties. Physically uncomplexed OM often contains a substantial portion of whole soil carbon (C) and nitrogen (N) and, compared with the whole soil or heavy fraction, has a wide C/N ratio and high O-alkyl (i.e., carbohydrates) and low carbonyl (i.e., proteins) C contents. The response of physically on-complexed OM to changes in land use and management practices is greater than that of other labile OM fractions or the whole soil C and N. Studies to elucidate the nutrient availability of physically uncomplexed OM suggest that it is not an immediate source of nutrients. That the quantity of physically uncomplexed OM is not always related to the amount of plant residue inputs suggests that other factors may control its accumulation in soil. Thus the quantity and the biological and chemical properties of physically uncomplexed OM are affected by the amount, composition., and accessibility of plant residues entering the soil; environmental conditions that may enhance or constrain decomposition; and the fractionation technique used.
引用
收藏
页码:975 / 985
页数:11
相关论文
共 83 条
[1]   Associations between organic matter fractions and the active soil microbial biomass [J].
Alvarez, CR ;
Alvarez, R ;
Grigera, S ;
Lavado, RS .
SOIL BIOLOGY & BIOCHEMISTRY, 1998, 30 (06) :767-773
[2]   Soil organic matter pools and their associations with carbon mineralization kinetics [J].
Alvarez, R ;
Alvarez, CR .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2000, 64 (01) :184-189
[3]   Organic-mineral interactions in marine sediments studied using density fractionation and X-ray photoelectron spectroscopy [J].
Arnarson, TS ;
Keil, RG .
ORGANIC GEOCHEMISTRY, 2001, 32 (12) :1401-1415
[4]   Turnover and storage of C and N in five density fractions from California annual grassland surface soils [J].
Baisden, WT ;
Amundson, R ;
Cook, AC ;
Brenner, DL .
GLOBAL BIOGEOCHEMICAL CYCLES, 2002, 16 (04)
[5]   SOIL ORGANIC-MATTER TURNOVER IN LONG-TERM FIELD EXPERIMENTS AS REVEALED BY C-13 NATURAL ABUNDANCE [J].
BALESDENT, J ;
WAGNER, GH ;
MARIOTTI, A .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1988, 52 (01) :118-124
[6]   Influences of mycelial fungi on soil aggregation and organic matter storage in conventional and no-tillage soils [J].
Beare, MH ;
Hus, S ;
Coleman, DC ;
Hendrix, PF .
APPLIED SOIL ECOLOGY, 1997, 5 (03) :211-219
[7]   WATER-STABLE AGGREGATES AND ORGANIC-MATTER FRACTIONS IN CONVENTIONAL-TILLAGE AND NO-TILLAGE SOILS [J].
BEARE, MH ;
HENDRIX, PF ;
COLEMAN, DC .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1994, 58 (03) :777-786
[8]   AGGREGATE-PROTECTED AND UNPROTECTED ORGANIC-MATTER POOLS IN CONVENTIONAL-TILLAGE AND NO-TILLAGE SOILS [J].
BEARE, MH ;
CABRERA, ML ;
HENDRIX, PF ;
COLEMAN, DC .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1994, 58 (03) :787-795
[9]   LABILE SOIL ORGANIC-MATTER AS INFLUENCED BY CROPPING PRACTICES IN AN ARID ENVIRONMENT [J].
BIEDERBECK, VO ;
JANZEN, HH ;
CAMPBELL, CA ;
ZENTNER, RP .
SOIL BIOLOGY & BIOCHEMISTRY, 1994, 26 (12) :1647-1656
[10]  
Bird JA, 2002, SOIL SCI SOC AM J, V66, P478, DOI 10.2136/sssaj2002.0478