Chemical and biological characteristics of physically uncomplexed organic matter

被引:358
作者
Gregorich, EG [1 ]
Beare, MH
Mckim, UF
Skjemstad, JO
机构
[1] Agr Canada, Cent Expt Farm, Ottawa, ON K1A 0C6, Canada
[2] New Zeland Inst Crop & Food Res, Christchurch, New Zealand
[3] CSIRO, Land & Water, Adelaide Lab, Glen Osmond, SA 5064, Australia
关键词
D O I
10.2136/sssaj2005.0116
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Physical fractionation methods are based on the premise that soil organic matter (SOM) can be divided into pools of functional relevance. Physically uncomplexed organic matter (OM) is isolated on the basis of particle size and/or density. Our objective here is to review research on the biological and chemical characteristics of physically uncomplexed OM that demonstrates its value (or otherwise) as a meaningful pool of SOM. Chemical characterization indicates that fractions isolated by size are not identical to those separated by density; even materials separated using variations of a particular fractionation method (i.e., different sizes or different densities) have different chemical and biological properties. Physically uncomplexed OM often contains a substantial portion of whole soil carbon (C) and nitrogen (N) and, compared with the whole soil or heavy fraction, has a wide C/N ratio and high O-alkyl (i.e., carbohydrates) and low carbonyl (i.e., proteins) C contents. The response of physically on-complexed OM to changes in land use and management practices is greater than that of other labile OM fractions or the whole soil C and N. Studies to elucidate the nutrient availability of physically uncomplexed OM suggest that it is not an immediate source of nutrients. That the quantity of physically uncomplexed OM is not always related to the amount of plant residue inputs suggests that other factors may control its accumulation in soil. Thus the quantity and the biological and chemical properties of physically uncomplexed OM are affected by the amount, composition., and accessibility of plant residues entering the soil; environmental conditions that may enhance or constrain decomposition; and the fractionation technique used.
引用
收藏
页码:975 / 985
页数:11
相关论文
共 83 条
[11]   Eubacterial community structure and population size within the soil light fraction, rhizosphere, and heavy fraction of several agricultural systems [J].
Blackwood, CB ;
Paul, EA .
SOIL BIOLOGY & BIOCHEMISTRY, 2003, 35 (09) :1245-1255
[12]   The response of soil quality indicators to conservation management [J].
Bolinder, MA ;
Angers, DA ;
Gregorich, EG ;
Carter, MR .
CANADIAN JOURNAL OF SOIL SCIENCE, 1999, 79 (01) :37-45
[13]   DYNAMICS OF SOIL ORGANIC-MATTER AS REFLECTED BY NATURAL C-13 ABUNDANCE IN PARTICLE-SIZE FRACTIONS OF FORESTED AND CULTIVATED OXISOLS [J].
BONDE, TA ;
CHRISTENSEN, BT ;
CERRI, CC .
SOIL BIOLOGY & BIOCHEMISTRY, 1992, 24 (03) :275-277
[14]   LIGHT-FRACTION SOIL ORGANIC-MATTER - ORIGIN AND CONTRIBUTION TO NET NITROGEN MINERALIZATION [J].
BOONE, RD .
SOIL BIOLOGY & BIOCHEMISTRY, 1994, 26 (11) :1459-1468
[15]   PARTICULATE SOIL ORGANIC-MATTER CHANGES ACROSS A GRASSLAND CULTIVATION SEQUENCE [J].
CAMBARDELLA, CA ;
ELLIOTT, ET .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1992, 56 (03) :777-783
[16]   Tillage - fertilizer changes: Effect on some soil quality attributes under long-term crop rotations in a thin Black Chernozem [J].
Campbell, CA ;
Selles, F ;
Lafond, GP ;
Biederbeck, VO ;
Zentner, RP .
CANADIAN JOURNAL OF SOIL SCIENCE, 2001, 81 (02) :157-165
[17]   Soil quality for sustainable land management: Organic matter and aggregation interactions that maintain soil functions [J].
Carter, MR .
AGRONOMY JOURNAL, 2002, 94 (01) :38-47
[18]   Soil nitrogen transformations and the role of light fraction organic matter in forest soils [J].
Compton, JE ;
Boone, RD .
SOIL BIOLOGY & BIOCHEMISTRY, 2002, 34 (07) :933-943
[19]  
Compton JE, 2000, ECOLOGY, V81, P2314, DOI 10.1890/0012-9658(2000)081[2314:LTIOAO]2.0.CO
[20]  
2