Coexistence of van Hove singularities and superlattice Dirac points in a slightly twisted graphene bilayer

被引:32
作者
Chu, Zhao-Dong [1 ]
He, Wen-Yu [1 ]
He, Lin [1 ]
机构
[1] Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
FERMIONS;
D O I
10.1103/PhysRevB.87.155419
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We consider the electronic structure of a slightly twisted graphene bilayer and show the coexistence of van Hove singularities (VHSs) and superlattice Dirac points in a continuum approximation. The graphene-on-graphene moire pattern gives rise to a periodic electronic potential, which leads to the emergence of the superlattice Dirac points due to the chiral nature of the charge carriers. Because of the distinguishing real and reciprocal structures, the sublattice exchange even and sublattice exchange odd structures of the twisted graphene bilayer result in two different structures of the superlattice Dirac points. We calculate the effect of a strain on the low-energy electronic structure of the twisted graphene bilayer and demonstrate that the strain affects the position of the VHSs dramatically. DOI: 10.1103/PhysRevB.87.155419
引用
收藏
页数:8
相关论文
共 42 条
[1]  
Balog R, 2010, NAT MATER, V9, P315, DOI [10.1038/nmat2710, 10.1038/NMAT2710]
[2]   Chirality and correlations in graphene [J].
Barlas, Yafis ;
Pereg-Barnea, T. ;
Polini, Marco ;
Asgari, Reza ;
MacDonald, A. H. .
PHYSICAL REVIEW LETTERS, 2007, 98 (23)
[3]   Emerging Zero Modes for Graphene in a Periodic Potential [J].
Brey, L. ;
Fertig, H. A. .
PHYSICAL REVIEW LETTERS, 2009, 103 (04)
[4]   Unraveling the Intrinsic and Robust Nature of van Hove Singularities in Twisted Bilayer Graphene by Scanning Tunneling Microscopy and Theoretical Analysis [J].
Brihuega, I. ;
Mallet, P. ;
Gonzalez-Herrero, H. ;
de laissardiere, G. Trambly ;
Ugeda, M. M. ;
Magaud, L. ;
Gomez-Rodriguez, J. M. ;
Yndurain, F. ;
Veuillen, J. -Y. .
PHYSICAL REVIEW LETTERS, 2012, 109 (19)
[5]   Quasiparticle Chirality in Epitaxial Graphene Probed at the Nanometer Scale [J].
Brihuega, I. ;
Mallet, P. ;
Bena, C. ;
Bose, S. ;
Michaelis, C. ;
Vitali, L. ;
Varchon, F. ;
Magaud, L. ;
Kern, K. ;
Veuillen, J. Y. .
PHYSICAL REVIEW LETTERS, 2008, 101 (20)
[6]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[7]   Electronic transport in two-dimensional graphene [J].
Das Sarma, S. ;
Adam, Shaffique ;
Hwang, E. H. ;
Rossi, Enrico .
REVIEWS OF MODERN PHYSICS, 2011, 83 (02) :407-470
[8]   Graphene bilayer with a twist: Electronic structure [J].
dos Santos, J. M. B. Lopes ;
Peres, N. M. R. ;
Castro Neto, A. H. .
PHYSICAL REVIEW LETTERS, 2007, 99 (25)
[9]   Symmetry breaking in commensurate graphene rotational stacking: Comparison of theory and experiment [J].
Hicks, J. ;
Sprinkle, M. ;
Shepperd, K. ;
Wang, F. ;
Tejeda, A. ;
Taleb-Ibrahimi, A. ;
Bertran, F. ;
Le Fevre, P. ;
de Heer, W. A. ;
Berger, C. ;
Conrad, E. H. .
PHYSICAL REVIEW B, 2011, 83 (20)
[10]   Graphene: New bridge between condensed matter physics and quantum electrodynamics [J].
Katsnelson, M. I. ;
Novoselov, K. S. .
SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) :3-13