Cellulose micro/nanofibres from Eucalyptus kraft pulp: Preparation and properties

被引:236
作者
Tonoli, G. H. D. [1 ]
Teixeira, E. M. [2 ]
Correa, A. C. [2 ]
Marconcini, J. M. [2 ]
Caixeta, L. A. [1 ]
Pereira-da-Silva, M. A. [3 ]
Mattoso, L. H. C. [2 ]
机构
[1] Univ Fed Lavras, Dept Forest Sci, BR-37200000 Lavras, MG, Brazil
[2] Embrapa Instrumentacao CNPDIA, LNNA, BR-13560970 Sao Carlos, SP, Brazil
[3] Univ Sao Paulo, Inst Fis Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Acid hydrolysis; Microfibrils; Nanofibrils; Refining; Sonication; Whiskers; REINFORCING CAPABILITY; BACTERIAL CELLULOSE; WHEAT-STRAW; NANOCOMPOSITES; NANOFIBERS; FIBER; WOOD; NANOCRYSTALS; BEHAVIOR; WHISKERS;
D O I
10.1016/j.carbpol.2012.02.052
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
There is growing interest in cellulose nanofibres from renewable sources for several industrial applications. However, there is a lack of information about one of the most abundant cellulose pulps: bleached Eucalyptus kraft pulp. The objective of the present work was to obtain Eucalyptus cellulose micro/nanofibres by three different processes, namely: refining, sonication and acid hydrolysis of the cellulose pulp. The refining was limited by the low efficiency of isolated nanofibrils, while sonication was more effective for this purpose. However, the latter process occurred at the expense of considerable damage to the cellulose structure. The whiskers obtained by acid hydrolysis resulted in nanostructures with lower diameter and length, and high crystallinity. Increasing hydrolysis reaction time led to narrower and shorter whiskers, but increased the crystallinity index. The present work contributes to the different widespread methods used for the production of micro/nanofibres for different applications. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:80 / 88
页数:9
相关论文
共 63 条
[31]   BACTERIAL CELLULOSE .4. APPLICATION TO PROCESSED FOODS [J].
OKIYAMA, A ;
MOTOKI, M ;
YAMANAKA, S .
FOOD HYDROCOLLOIDS, 1993, 6 (06) :503-511
[32]   Application of cellulose microfibrils in polymer nanocomposites [J].
Orts, WJ ;
Shey, J ;
Imam, SH ;
Glenn, GM ;
Guttman, ME ;
Revol, JF .
JOURNAL OF POLYMERS AND THE ENVIRONMENT, 2005, 13 (04) :301-306
[33]   Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels [J].
Paakko, M. ;
Ankerfors, M. ;
Kosonen, H. ;
Nykanen, A. ;
Ahola, S. ;
Osterberg, M. ;
Ruokolainen, J. ;
Laine, J. ;
Larsson, P. T. ;
Ikkala, O. ;
Lindstrom, T. .
BIOMACROMOLECULES, 2007, 8 (06) :1934-1941
[34]   Bio-nano reinforcement of environmentally degradable polymer matrix by cellulose whiskers from grass [J].
Pandey, J. K. ;
Chu, W. S. ;
Kim, C. S. ;
Lee, C. S. ;
Ahn, S. H. .
COMPOSITES PART B-ENGINEERING, 2009, 40 (07) :676-680
[35]  
Petersson L., 2006, ACS S SERIES, V938
[36]   Molecularly engineered nanocomposites: Layer-by-layer assembly of cellulose nanocrystals [J].
Podsiadlo, P ;
Choi, SY ;
Shim, B ;
Lee, J ;
Cuddihy, M ;
Kotov, NA .
BIOMACROMOLECULES, 2005, 6 (06) :2914-2918
[37]   Torrefaction of wood - Part 1. Weight loss kinetics [J].
Prins, MJ ;
Ptasinski, KJ ;
Janssen, FJJG .
JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2006, 77 (01) :28-34
[38]   Discrimination of matrix-fibre interactions in all-cellulose nanocomposites [J].
Pullawan, T. ;
Wilkinson, A. N. ;
Eichhorn, S. J. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2010, 70 (16) :2325-2330
[39]   Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose [J].
Roman, M ;
Winter, WT .
BIOMACROMOLECULES, 2004, 5 (05) :1671-1677
[40]   Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior [J].
Rosa, M. F. ;
Medeiros, E. S. ;
Malmonge, J. A. ;
Gregorski, K. S. ;
Wood, D. F. ;
Mattoso, L. H. C. ;
Glenn, G. ;
Orts, W. J. ;
Imam, S. H. .
CARBOHYDRATE POLYMERS, 2010, 81 (01) :83-92