Population size reduction for the differential evolution algorithm

被引:300
作者
Brest, Janez [1 ]
Maucec, Mirjam Sepesy [1 ]
机构
[1] Univ Maribor, Fac Elect Engn & Comp Sci, SLO-2000 Maribor, Slovenia
关键词
Differential evolution; Control parameter; Fitness function; Global function optimization; Self-adaptation; Population size;
D O I
10.1007/s10489-007-0091-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper studies the efficiency of a recently defined population-based direct global optimization method called Differential Evolution with self-adaptive control parameters. The original version uses fixed population size but a method for gradually reducing population size is proposed in this paper. It improves the efficiency and robustness of the algorithm and can be applied to any variant of a Differential Evolution algorithm. The proposed modification is tested on commonly used benchmark problems for unconstrained optimization and compared with other optimization methods such as Evolutionary Algorithms and Evolution Strategies.
引用
收藏
页码:228 / 247
页数:20
相关论文
共 30 条
[1]   Population set-based global optimization algorithms:: some modifications and numerical studies [J].
Ali, MM ;
Törn, A .
COMPUTERS & OPERATIONS RESEARCH, 2004, 31 (10) :1703-1725
[2]   Adaptive business intelligence based on evolution strategies:: some application examples of self-adaptive software [J].
Bäck, T .
INFORMATION SCIENCES, 2002, 148 (1-4) :113-121
[3]  
Back T., 1997, Handbook of evolutionary computation
[4]  
Back T., 1996, EVOLUTIONARY ALGORIT
[5]  
Brest J., 2006, 2006 IEEE C EV COMP
[6]   Performance comparison of self-adaptive and adaptive differential evolution algorithms [J].
Brest, Janez ;
Boskovic, Borko ;
Greiner, Saso ;
Zumer, Viljem ;
Maucec, Mirjam Sepesy .
SOFT COMPUTING, 2007, 11 (07) :617-629
[7]   Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems [J].
Brest, Janez ;
Greiner, Saso ;
Boskovic, Borko ;
Mernik, Marjan ;
Zumer, Vijern .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2006, 10 (06) :646-657
[8]  
Eiben A.E., 2015, Introduction to Evolutionary Computing
[9]  
Eiben AE, 2004, LECT NOTES COMPUT SC, V3242, P41
[10]   A trigonometric mutation operation to differential evolution [J].
Fan, HY ;
Lampinen, J .
JOURNAL OF GLOBAL OPTIMIZATION, 2003, 27 (01) :105-129