Crystal Structure of the Peroxisome Proliferator-Activated Receptor γ (PPARγ) Ligand Binding Domain Complexed with a Novel Partial Agonist: A New Region of the Hydrophobic Pocket Could Be Exploited for Drug Design

被引:89
作者
Montanari, Roberta [1 ]
Saccoccia, Fulvio [1 ]
Scotti, Elena [2 ]
Crestani, Maurizio [2 ]
Godio, Cristina [2 ]
Gilardi, Federica [2 ]
Loiodice, Fulvio [3 ]
Fracchiolla, Giuseppe [3 ]
Laghezza, Antonio [3 ]
Tortorella, Paolo [3 ]
Lavecchia, Antonio [4 ]
Novellino, Ettore [4 ]
Mazza, Fernando [1 ,5 ]
Aschi, Massimiliano [5 ]
Pochetti, Giorgio [1 ]
机构
[1] CNR, I-00016 Rome, Italy
[2] Univ Milan, I-20133 Milan, Italy
[3] Univ Bari, I-70125 Bari, Italy
[4] Univ Naples Federico II, I-80131 Naples, Italy
[5] Univ Aquila, I-67010 Laquila, Italy
关键词
D O I
10.1021/jm800733h
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
The peroxisome proliferator-activated receptors (PPARs) are ligand-dependent transcription factors regulating glucose and lipid metabolism. The search for new PPAR ligands with reduced adverse effects with respect to the marketed antidiabetic agents thiazolidinediones (TZDs) and the dual-agonists glitazars is highly desired. We report the crystal structure and activity of the two enantiomeric forms of a clofibric acid analogue, respectively complexed with the ligand-binding domain (LBD) of PPAR gamma, and provide an explanation on a molecular basis for their different potency and efficacy against PPAR gamma. The more potent S-enantionier is a dual PPAR alpha/PPAR gamma agonist which presents a partial agonism profile against PPAR gamma. Docking of the S-enantiomer in the PPAR alpha-LBD has been performed to explain its different Subtype pharmacological profile. The hypothesis that partial agonists show differential stabilization of helix 3, when compared to full agonists, is also discussed. Moreover, the structure of the complex with the S-enantiomer reveals a new region of the PPAR gamma-LBD never sampled before by other ligands.
引用
收藏
页码:7768 / 7776
页数:9
相关论文
共 48 条
[1]   Molecular dynamics simulations with constrained roto-translational motions: Theoretical basis and statistical mechanical consistency [J].
Amadei, A ;
Chillemi, G ;
Ceruso, MA ;
Grottesi, A ;
Di Nola, A .
JOURNAL OF CHEMICAL PHYSICS, 2000, 112 (01) :9-23
[2]  
[Anonymous], 2005, MOL OP ENV MOE VERS
[3]  
Berendsen H. J. C., 1981, INTERMOLECULAR FORCE, P331, DOI [DOI 10.1007/978-94-015-7658, DOI 10.1007/978-94-015-7658-1_21]
[4]   The mechanisms of action of PPARs [J].
Berger, J ;
Moller, DE .
ANNUAL REVIEW OF MEDICINE, 2002, 53 :409-435
[5]   PPARs: therapeutic targets for metabolic disease [J].
Berger, JP ;
Akiyama, TE ;
Meinke, PT .
TRENDS IN PHARMACOLOGICAL SCIENCES, 2005, 26 (05) :244-251
[6]   DETERMINING ATOM-CENTERED MONOPOLES FROM MOLECULAR ELECTROSTATIC POTENTIALS - THE NEED FOR HIGH SAMPLING DENSITY IN FORMAMIDE CONFORMATIONAL-ANALYSIS [J].
BRENEMAN, CM ;
WIBERG, KB .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1990, 11 (03) :361-373
[7]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[8]   Partial agonists activate PPARγ using a helix 12 independent mechanism [J].
Bruning, John B. ;
Chalmers, Michael J. ;
Prasad, Swati ;
Busby, Scott A. ;
Karnenecka, Theodore M. ;
He, Yuanjun ;
Nettles, Kendall W. ;
Griffin, Patrick R. .
STRUCTURE, 2007, 15 (10) :1258-1271
[9]  
CASE DA, 2006, E A AMBER 9
[10]   A 2ND GENERATION FORCE-FIELD FOR THE SIMULATION OF PROTEINS, NUCLEIC-ACIDS, AND ORGANIC-MOLECULES [J].
CORNELL, WD ;
CIEPLAK, P ;
BAYLY, CI ;
GOULD, IR ;
MERZ, KM ;
FERGUSON, DM ;
SPELLMEYER, DC ;
FOX, T ;
CALDWELL, JW ;
KOLLMAN, PA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (19) :5179-5197