Rapid and Controllable Flame Reduction of TiO2 Nanowires for Enhanced Solar Water-Splitting

被引:183
作者
Cho, In Sun [1 ]
Logar, Manca [1 ,2 ]
Lee, Chi Hwan [1 ]
Cai, Lili [1 ]
Prinz, Fritz B. [1 ]
Zheng, Xiaolin [1 ]
机构
[1] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[2] Jozef Stefan Inst, Adv Mat Dept, Ljubljana 1000, Slovenia
关键词
Flame reduction; oxygen vacancy; TiO2; nanowires; conductivity; charge transport/transfer efficiencies; photoelectrochemical water-splitting; OXYGEN VACANCIES; TRANSITION-METAL; NANOTUBE ARRAYS; SURFACE; CARBON; PHOTOCATALYSIS; PHOTORESPONSE; TUNGSTEN; DEFECTS; OXIDES;
D O I
10.1021/nl4026902
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report a new flame reduction method to generate controllable amount of oxygen vacancies in TiO2 nanowires that leads to nearly three times improvement in the photoelectrochemical (PEC) water-splitting performance. The flame reduction method has unique advantages of a high temperature (>1000 degrees C), ultrafast heating rate, tunable reduction environment, and open-atmosphere operation, so it enables rapid formation of oxygen vacancies (less than one minute) without damaging the nanowire morphology and crystallinity and is even applicable to various metal oxides. Significantly, we show that flame reduction greatly improves the saturation photocurrent densities of TiO2 nanowires (2.7 times higher), alpha-Fe2O3 nanowires (9.4 times higher), ZnO nanowires (2.0 times higher), and BiVO4 thin film (4.3 times higher) in comparison to untreated control samples for PEC. water-splitting applications.
引用
收藏
页码:24 / 31
页数:8
相关论文
共 38 条
[1]   Factors governing oxygen reduction in solid oxide fuel cell cathodes [J].
Adler, SB .
CHEMICAL REVIEWS, 2004, 104 (10) :4791-4843
[2]   Field-effect transistors based on single semiconducting oxide nanobelts [J].
Arnold, MS ;
Avouris, P ;
Pan, ZW ;
Wang, ZL .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (03) :659-663
[3]   High-performance ZnO nanowire field effect transistors [J].
Chang, Pai-Chun ;
Fan, Zhiyong ;
Chien, Chung-Jen ;
Stichtenoth, Daniel ;
Ronning, Carsten ;
Lu, Jia Grace .
APPLIED PHYSICS LETTERS, 2006, 89 (13)
[4]   Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols [J].
Chen, Zhebo ;
Jaramillo, Thomas F. ;
Deutsch, Todd G. ;
Kleiman-Shwarsctein, Alan ;
Forman, Arnold J. ;
Gaillard, Nicolas ;
Garland, Roxanne ;
Takanabe, Kazuhiro ;
Heske, Clemens ;
Sunkara, Mahendra ;
McFarland, Eric W. ;
Domen, Kazunari ;
Miller, Eric L. ;
Turner, John A. ;
Dinh, Huyen N. .
JOURNAL OF MATERIALS RESEARCH, 2010, 25 (01) :3-16
[5]   Codoping titanium dioxide nanowires with tungsten and carbon for enhanced photoelectrochemical performance [J].
Cho, In Sun ;
Lee, Chi Hwan ;
Feng, Yunzhe ;
Logar, Manca ;
Rao, Pratap M. ;
Cai, Lili ;
Kim, Dong Rip ;
Sinclair, Robert ;
Zheng, Xiaolin .
NATURE COMMUNICATIONS, 2013, 4
[6]   Branched TiO2 Nanorods for Photoelectrochemical Hydrogen Production [J].
Cho, In Sun ;
Chen, Zhebo ;
Forman, Arnold J. ;
Kim, Dong Rip ;
Rao, Pratap M. ;
Jaramillo, Thomas F. ;
Zheng, Xiaolin .
NANO LETTERS, 2011, 11 (11) :4978-4984
[7]   Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger [J].
Dotan, Hen ;
Sivula, Kevin ;
Graetzel, Michael ;
Rothschild, Avner ;
Warren, Scott C. .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (03) :958-964
[8]   The Role of Surface Oxygen Vacancies in the NO2 Sensing Properties of SnO2 Nanocrystals [J].
Epifani, Mauro ;
Prades, Joan Daniel ;
Comini, Elisabetta ;
Pellicer, Eva ;
Avella, Manuel ;
Siciliano, Pietro ;
Faglia, Guido ;
Cirera, Albert ;
Scotti, Roberto ;
Morazzoni, Franca ;
Morante, Joan Ramon .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (49) :19540-19546
[9]  
Gan J., 2013, SCI REP, P3
[10]   Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges [J].
Ganduglia-Pirovano, M. Veronica ;
Hofmann, Alexander ;
Sauer, Joachim .
SURFACE SCIENCE REPORTS, 2007, 62 (06) :219-270