Investigation of LSM1.1-ScSZ composite cathodes for anode-supported solid oxide fuel cells

被引:31
作者
Wang, ZW
Cheng, MJ [1 ]
Dong, YL
Zhang, M
Zhang, HM
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, Dalian 116023, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China
关键词
ScSZ; LSM1.1; composite cathode; anode-supported SOFCs;
D O I
10.1016/j.ssi.2005.07.013
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
La0.8Sr0.2Mn1.1O3 (LSM1.1)-10 mol% Sc2O3-Stabilized ZrO2 co-doped with CeO2 (ScSZ) composite cathodes were investigated for anode-supported solid oxide fuel cells (SOFCs) with thin 8 mol% Y2O3-stabilized ZrO2 (YSZ) electrolyte. X-ray diffraction (XRD) results indicated that the ScSZ electrolytes displayed good chemical compatibility with the nonstoichiometric LSM1.1 against co-firing at 1300 degrees C. Increasing the CeO2 content in the ScSZ electrolytes dramatically suppressed the electrode polarization resistance, which may be related to the improved surface oxygen exchange or the enlarged active area of cathode. The 5Ce10ScZr was the best electrolyte for the composite cathodes, which caused a small ohmic resistance decrease and the reduced polarization resistance and brought about the highest cell performance. The cell performances at lower temperatures seemed to rely on the electrode polarization resistance more seriously, than the ohmic resistance. Compared with the cell impedance at higher temperatures, the higher the 5Ce10ScZr proportion in the composite cathodes, the smaller the increment of the charge transfer resistance at lower temperatures. The anode-supported SOFC with the LSM1.1-5Ce10ScZr (60:40) composite cathode achieved the maximum power densities of 0.82 W/cm(2) at 650 degrees C and 2.24 W/cm(2) at 800 degrees C, respectively. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:2555 / 2561
页数:7
相关论文
共 34 条
[1]   Factors governing oxygen reduction in solid oxide fuel cell cathodes [J].
Adler, SB .
CHEMICAL REVIEWS, 2004, 104 (10) :4791-4843
[2]   Electrical conductivity of ZrO2-Sc2O3 doped with HfO2, CeO2, and Ga2O3 [J].
Arachi, Y ;
Asai, T ;
Yamamoto, O ;
Takeda, Y ;
Imanishi, N ;
Kawate, K ;
Tamakoshi, C .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (05) :A520-A523
[3]   Performance of solid oxide fuel cells with LSGM-LSM composite cathodes [J].
Armstrong, TJ ;
Virkar, AV .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (12) :A1565-A1571
[4]   SOFC CATHODE/ELECTROLYTE INTERFACE .1. REACTIVITY BETWEEN LA0.85SR0.15MNO3 AND ZRO2-Y2O3 [J].
BRUGNONI, C ;
DUCATI, U ;
SCAGLIOTTI, M .
SOLID STATE IONICS, 1995, 76 (3-4) :177-182
[5]   Identification of O2 reduction processes at yttria stabilized zirconia|doped lanthanum manganite interface [J].
Chen, XJ ;
Khor, KA ;
Chan, SH .
JOURNAL OF POWER SOURCES, 2003, 123 (01) :17-25
[6]   Chemical degradation of La1-xSrMnO3/Y2O3-stabilized ZrO2 composite cathodes in the presence of current collector pastes [J].
Chervin, C ;
Glass, RS ;
Kauzlarich, SM .
SOLID STATE IONICS, 2005, 176 (1-2) :17-23
[7]   Microstructure and cathodic performance of La0.9Sr0.1MnO3/yttria-stabilized zirconia composite electrodes [J].
Choi, JH ;
Jang, JH ;
Oh, SM .
ELECTROCHIMICA ACTA, 2001, 46 (06) :867-874
[8]   The limiting factor for oxygen exchange at the surface of fuel cell electrolytes [J].
de Ridder, M ;
Vervoort, AGJ ;
van Welzenis, RG ;
Brongersma, HH .
SOLID STATE IONICS, 2003, 156 (03) :255-262
[9]   Reduced-temperature solid oxide fuel cell based on YSZ thin-film electrolyte [J].
deSouza, S ;
Visco, SJ ;
DeJonghe, LC .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (03) :L35-L37
[10]   Solid oxide fuel cell cathodes: Polarization mechanisms and modeling of the electrochemical performance [J].
Fleig, J .
ANNUAL REVIEW OF MATERIALS RESEARCH, 2003, 33 :361-382