Physics basis for the advanced tokamak fusion power plant, ARIES-AT

被引:42
作者
Jardin, SC
Kessel, CE
Mau, TK
Miller, RL
Najmabadi, F
Chan, VS
Chu, MS
LaHaye, R
Lao, LL
Petrie, TW
Politzer, P
St John, HE
Snyder, P
Staebler, GM
Turnbull, AD
West, WP
机构
[1] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
[2] Univ Calif San Diego, Fus Energy Res Program, La Jolla, CA 92093 USA
[3] Gen Atom Co, San Diego, CA 92186 USA
关键词
reactor studies; fusion power plant; advanced tokamak; physics basis;
D O I
10.1016/j.fusengdes.2005.06.352
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The advanced tokamak is considered as the basis for a fusion power plant. The ARIES-AT design has an aspect ratio of A R/a = 4.0, an elongation and triangularity of K = 2.20, delta = 0.90 (evaluated at the separatrix surface), a toroidal beta of beta = 9.1% (normalized to the vacuum toroidal field at the plasma center), which corresponds to a normalized beta beta(N) equivalent to 100 x beta/(I-p(MA)/a(m)B(T)) = 5.4. These beta values are chosen to be 10% below the ideal MHD stability limit. The bootstrap-current fraction is f(BS) equivalent to I-Bs/I-P = 0.91. This leads to a design with total plasma current I-P = 12.8 MA, and toroidal field of 11.1 T (at the coil edge) and 5.8 T (at the plasma center). The major and minor radii are 5.2 and 1.3 m. The effects of H-mode edge gradients and the stability of this configuration to non-ideal modes is analyzed. The current drive system consists of ICRF/FW for on-axis current drive and a Lower Hybrid system for off-axis. Transport projections are presented using the drift-wave based GLF23 model. The approach to power and particle exhaust using both plasma core and scrape-off-layer radiation is presented. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:25 / 62
页数:38
相关论文
共 73 条
[61]   Electron heat transport in improved confinement discharges in DIII-D [J].
Stallard, BW ;
Greenfield, CM ;
Staebler, GM ;
Rettig, CL ;
Chu, MS ;
Austin, ME ;
Baker, DR ;
Baylor, LR ;
Burrell, KH ;
DeBoo, JC ;
deGrassie, JS ;
Doyle, EJ ;
Lohr, J ;
McKee, GR ;
Miller, RL ;
Peebles, WA ;
Petty, CC ;
Pinsker, RI ;
Rice, BW ;
Rhodes, TL ;
Waltz, RE ;
Zeng, L .
PHYSICS OF PLASMAS, 1999, 6 (05) :1978-1984
[62]  
Stambaugh R, 1999, NUCL FUSION, V39, P2391, DOI 10.1088/0029-5515/39/12/304
[63]  
STJOHN H, COMMUNICATION
[64]   Resistive wall stabilization of high-beta plasmas in DIII-D [J].
Strait, EJ ;
Bialek, J ;
Bogatu, N ;
Chance, M ;
Chu, MS ;
Edgell, D ;
Garofalo, AM ;
Jackson, GL ;
Jensen, TH ;
Johnson, LC ;
Kim, JS ;
La Haye, RJ ;
Navratil, G ;
Okabayashi, M ;
Reimerdes, H ;
Scoville, JT ;
Turnbull, AD ;
Walker, ML .
NUCLEAR FUSION, 2003, 43 (06) :430-440
[65]  
Thumm M, 1997, AIP CONF PROC, P183, DOI 10.1063/1.53410
[66]   TOKAMAK CONFINEMENT PROJECTIONS AND PERFORMANCE GOALS [J].
UCKAN, NA .
FUSION TECHNOLOGY, 1989, 15 (02) :391-395
[67]   Experimental confirmation of impurity convection driven by the ion-temperature gradient in toroidal plasmas [J].
Wade, MR ;
Houlberg, WA ;
Baylor, LR .
PHYSICAL REVIEW LETTERS, 2000, 84 (02) :282-285
[68]   Impurity enrichment studies with induced scrape-off layer flow on DIII-D [J].
Wade, MR ;
Hogan, JT ;
Allen, SL ;
Brooks, NH ;
Hill, DN ;
Maingi, R ;
Schaffer, MJ ;
Watkins, JG ;
Whyte, DG ;
Wood, RD ;
West, WP .
NUCLEAR FUSION, 1998, 38 (12) :1839-1859
[69]   A gyro-Landau-fluid transport model [J].
Waltz, RE ;
Staebler, GM ;
Dorland, W ;
Hammett, GW ;
Kotschenreuther, M ;
Konings, JA .
PHYSICS OF PLASMAS, 1997, 4 (07) :2482-2496
[70]   ADVANCES IN THE SIMULATION OF TOROIDAL GYRO-LANDAU FLUID MODEL TURBULENCE [J].
WALTZ, RE ;
KERBEL, GD ;
MILOVICH, J ;
HAMMETT, GW .
PHYSICS OF PLASMAS, 1995, 2 (06) :2408-2416