Anomalous diffusion of inertial, weakly damped particles

被引:103
作者
Friedrich, R.
Jenko, F.
Baule, A.
Eule, S.
机构
[1] Univ Munster, Inst Theoret Phys, D-48149 Munster, Germany
[2] Max Planck Inst Plasma Phys, D-85748 Garching, Germany
[3] Univ Leeds, Dept Phys & Astron, Leeds LS2 9JT, W Yorkshire, England
关键词
D O I
10.1103/PhysRevLett.96.230601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The anomalous (i.e., non-Gaussian) dynamics of particles subject to a deterministic acceleration and a series of "random kicks" is studied. Based on an extension of the concept of continuous time random walks to position-velocity space, a new fractional equation of the Kramers-Fokker-Planck type is derived. The associated collision operator necessarily involves a fractional substantial derivative, representing important nonlocal couplings in time and space. For the force-free case, a closed solution is found and discussed.
引用
收藏
页数:4
相关论文
共 15 条
[1]  
Balescu R, 2005, SER PLASMA PHYS
[2]   Dissipation and fluctuation for a randomly kicked particle: Normal and anomalous diffusion [J].
Barkai, E ;
Fleurov, V .
CHEMICAL PHYSICS, 1996, 212 (01) :69-88
[3]   Fractional Kramers equation [J].
Barkai, E ;
Silbey, RJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (16) :3866-3874
[4]  
Coffey W. T., 2004, LANGEVIN EQUATION
[5]  
FRIEDRICH R, IN PRESS
[6]   Brownian motion in a field of force and the diffusion model of chemical reactions [J].
Kramers, HA .
PHYSICA, 1940, 7 :284-304
[7]   The random walk's guide to anomalous diffusion: a fractional dynamics approach [J].
Metzler, R ;
Klafter, J .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 339 (01) :1-77
[8]   The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics [J].
Metzler, R ;
Klafter, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (31) :R161-R208
[9]   RANDOM WALKS ON LATTICES .2. [J].
MONTROLL, EW ;
WEISS, GH .
JOURNAL OF MATHEMATICAL PHYSICS, 1965, 6 (02) :167-+
[10]  
Obukhov A. M., 1959, ADV GEOPHYS, V6, P113, DOI DOI 10.1016/S0065-2687(08)60098-9