Uricase-catalyzed oxidation of uric acid using an artificial electron acceptor and fabrication of amperometric uric acid sensors with use of a redox ladder polymer

被引:67
作者
Nakaminami, T [1 ]
Ito, S [1 ]
Kuwabata, S [1 ]
Yoneyama, H [1 ]
机构
[1] Osaka Univ, Fac Engn, Dept Appl Chem, Osaka 5650871, Japan
关键词
D O I
10.1021/ac981168u
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Electrochemical oxidation of uric acid catalyzed by uricase (uric acid oxidase, UOx; EC 1.7.3.3) was studied using several redox compounds including 5-methylphenazinium (MP) and 1-methoxy-5-methylphenazinium (MMP) as electron accepters for UOx, which does not contain any redox cofactor. It was found that MP and MMP were useful to mediate electrons from UOx to an electrode in the enzymatic oxidation of uric acid. A novel redox polymer, poly(N-methyl-o-phenylenediamine) (poly-MPD), containing the MP units was also found to possess the mediation ability for UOx, and poly-MPD was immobilized together with UOx onto an electrode substrate covered with a self-assembled monolayer of 2-aminoethanethiolate with use of glutaraldehyde as a binding agent. The resulting electrode (poly-MPD/UOx/Au) exhibited amperometric responses to uric acid with very fast response of similar to 30 s, allowing reagentless amperometric determination in a concentration range covering that in the blood of a healthy human being. Kinetic parameters of the apparent Michaelis constant and the maximum current response obtained at the poly-MPD/UOx/Au suggested that electrochemical oxidation of uric acid was controlled by diffusion of uric acid into the enzyme film and that the redox polymer worked well in mediating between active sites of UOx molecules and the electrode substrate.
引用
收藏
页码:1928 / 1934
页数:7
相关论文
共 65 条
[1]   NAD(+)-dependent enzyme electrodes: Electrical contact of cofactor-dependent enzymes and electrodes [J].
Bardea, A ;
Katz, E ;
Buckmann, AF ;
Willner, I .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (39) :9114-9119
[2]   ELECTROCHEMICAL IMMOBILIZATION OF ENZYMES .1. THEORY [J].
BARTLETT, PN ;
WHITAKER, RG .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1987, 224 (1-2) :27-35
[3]   ELECTROCHEMICAL IMMOBILIZATION OF ENZYMES .2. GLUCOSE-OXIDASE IMMOBILIZED IN POLY-N-METHYLPYRROLE [J].
BARTLETT, PN ;
WHITAKER, RG .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1987, 224 (1-2) :37-48
[4]   ELECTROCHEMICAL IMMOBILIZATION OF ENZYMES .4. COIMMOBILIZATION OF GLUCOSE-OXIDASE AND FERRO FERRICYANIDE IN POLY(NORMAL-METHYLPYRROLE) FILMS [J].
BARTLETT, PN ;
ALI, Z ;
EASTWICKFIELD, V .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1992, 88 (18) :2677-2683
[5]   THEORETICAL TREATMENT OF DIFFUSION AND KINETICS IN AMPEROMETRIC IMMOBILIZED ENZYME ELECTRODES .1. REDOX MEDIATOR ENTRAPPED WITHIN THE FILM [J].
BARTLETT, PN ;
PRATT, KFE .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1995, 397 (1-2) :61-78
[6]   ENZYME CATALYSIS AT HYDROGEL-MODIFIED ELECTRODES WITH REDOX POLYMER MEDIATOR [J].
CALVO, EJ ;
DANILOWICZ, C ;
DIAZ, L .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1993, 89 (02) :377-384
[7]   Electrical communication between electrodes and enzymes mediated by redox hydrogels [J].
Calvo, EJ ;
Etchenique, R ;
Danilowicz, C ;
Diaz, L .
ANALYTICAL CHEMISTRY, 1996, 68 (23) :4186-4193
[8]   A NEW POLYCATIONIC HYDROGEL FOR 3-DIMENSIONAL ENZYME WIRED MODIFIED ELECTRODES [J].
CALVO, EJ ;
DANILOWICZ, C ;
DIAZ, L .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1994, 369 (1-2) :279-282
[9]   PERMEATION OF SOLUTES THROUGH AN ELECTROPOLYMERIZED ULTRATHIN POLY-O-PHENYLENEDIAMINE FILM USED AS AN ENZYME-ENTRAPPING MEMBRANE [J].
CENTONZE, D ;
MALITESTA, C ;
PALMISANO, F ;
ZAMBONIN, PG .
ELECTROANALYSIS, 1994, 6 (5-6) :423-429
[10]   ELECTROCHEMICAL PREPARATION OF A LADDER POLYMER CONTAINING PHENAZINE RINGS [J].
CHIBA, K ;
OHSAKA, T ;
OHNUKI, Y ;
OYAMA, N .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1987, 219 (1-2) :117-124