Fortification of CdSe Quantum Dots with Graphene Oxide. Excited State Interactions and Light Energy Conversion

被引:308
作者
Lightcap, Ian V. [1 ]
Kamat, Prashant V. [1 ]
机构
[1] Univ Notre Dame, Radiat Lab, Dept Chem & Biochem, Notre Dame, IN 46556 USA
关键词
SENSITIZED SOLAR-CELLS; LITHIUM ION BATTERIES; COUNTER ELECTRODE; PHOTOCATALYTIC REDUCTION; PHOTOVOLTAIC DEVICES; TIO2; FILMS; COMPOSITE; NANOPARTICLES; NANOCRYSTALS; EFFICIENCY;
D O I
10.1021/ja3012929
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphene based 2-D carbon nanostructures provide new opportunities to fortify semiconductor based light harvesting assemblies. Electron and energy transfer rates from photoexcited CdSe colloidal quantum dots (QDs) to graphene oxide (GO) and reduced graphene oxide (RGO) were isolated by analysis of excited state deactivation lifetimes as a function of degree of oxidation and charging in (R)GO. Apparent rate constants for energy and electron transfer determined for CdSe-GO composites were 5.5 x 10(8) and 6.7 x 10(8) s(-1), respectively. Additionally, incorporation of GO in colloidal CdSe QD films deposited on conducting glass electrodes was found to enhance the charge separation and electron conduction through the QD film, thus allowing three-dimensional sensitization. Photoanodes assembled from CdSe-graphene composites in quantum dot sensitized solar cells display improved photocurrent response (similar to 150%) over those prepared without GO.
引用
收藏
页码:7109 / 7116
页数:8
相关论文
共 43 条
[1]   Photothermal Deoxygenation of Graphite Oxide with Laser Excitation in Solution and Graphene-Aided Increase in Water Temperature [J].
Abdelsayed, Victor ;
Moussa, Sherif ;
Hassan, Hassan M. ;
Aluri, Hema S. ;
Collinson, Maryanne M. ;
El-Shall, M. Samy .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (19) :2804-2809
[2]   Design of Injection and Recombination in Quantum Dot Sensitized Solar Cells [J].
Barea, Eva M. ;
Shalom, Menny ;
Gimenez, Sixto ;
Hod, Idan ;
Mora-Sero, Ivan ;
Zaban, Arie ;
Bisquert, Juan .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (19) :6834-6839
[3]   Quantum dot solar cells.: Electrophoretic deposition of CdSe-C60 composite films and capture of photogenerated electrons with nC60 cluster shell [J].
Brown, Patrick ;
Kamat, Prashant V. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (28) :8890-+
[4]  
Chandler R. E., 2007, PHYS REV B, P75
[5]   Energy Transfer from Individual Semiconductor Nanocrystals to Graphene [J].
Chen, Zheyuan ;
Berciaud, Stephane ;
Nuckolls, Colin ;
Heinz, Tony F. ;
Brus, Louis E. .
ACS NANO, 2010, 4 (05) :2964-2968
[6]   Screen-printed Cu2S-based Counter Electrode for Quantum-dot-sensitized Solar Cell [J].
Deng, Minghui ;
Huang, Shuqing ;
Zhang, Quanxin ;
Li, Dongmei ;
Luo, Yanhong ;
Shen, Qing ;
Toyoda, Taro ;
Meng, Qingbo .
CHEMISTRY LETTERS, 2010, 39 (11) :1168-1170
[7]   High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells [J].
Diguna, Lina J. ;
Shen, Qing ;
Kobayashi, Junya ;
Toyoda, Taro .
APPLIED PHYSICS LETTERS, 2007, 91 (02)
[8]   Graphene-based Composite Thin Films for Electronics [J].
Eda, Goki ;
Chhowalla, Manish .
NANO LETTERS, 2009, 9 (02) :814-818
[9]   Atomic Structure of Reduced Graphene Oxide [J].
Gomez-Navarro, Cristina ;
Meyer, Jannik C. ;
Sundaram, Ravi S. ;
Chuvilin, Andrey ;
Kurasch, Simon ;
Burghard, Marko ;
Kern, Klaus ;
Kaiser, Ute .
NANO LETTERS, 2010, 10 (04) :1144-1148
[10]   Modeling High-Efficiency Quantum Dot Sensitized Solar Cells [J].
Gonzalez-Pedro, Victoria ;
Xu, Xueqing ;
Mora-Sero, Ivan ;
Bisquert, Juan .
ACS NANO, 2010, 4 (10) :5783-5790