Energy Transfer from Individual Semiconductor Nanocrystals to Graphene

被引:325
作者
Chen, Zheyuan [1 ]
Berciaud, Stephane [1 ,2 ,3 ]
Nuckolls, Colin [1 ]
Heinz, Tony F. [2 ,3 ]
Brus, Louis E. [1 ]
机构
[1] Columbia Univ, Dept Chem, New York, NY 10027 USA
[2] Columbia Univ, Dept Phys, New York, NY 10027 USA
[3] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA
关键词
semiconductor nanocrystals; graphene; energy transfer; charge transfer; fluorescence quenching; QUANTUM DOTS; FLUORESCENCE; INTERMITTENCY; EMISSION; STATES;
D O I
10.1021/nn1005107
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Energy transfer from photoexcited zero-dimensional systems to metallic systems plays a prominent role in modern day materials science. A situation of particular interest concerns the interaction between a photoexcited dipole and an atomically thin metal. The recent discovery of graphene layers permits investigation of this phenomenon. Here we report a study of fluorescence from individual CdSe/ZnS nanocrystals in contact with single- and few-layer graphene sheets. The rate of energy transfer is determined from the strong quenching of the nanocrystal fluorescence. For single-layer graphene, we find a rate of similar to 4 ns(-1), in agreement with a model based on the dipole approximation and a tight-binding description of graphene. This rate increases significantly with the number of graphene layers, before approaching the bulk limit. Our study quantifies energy transfer to and fluorescence quenching by graphene, critical properties for novel applications in photovoltaic devices and as a molecular ruler.
引用
收藏
页码:2964 / 2968
页数:5
相关论文
共 33 条
[1]  
Barnes WL, 1998, J MOD OPTIC, V45, P661, DOI 10.1080/09500349808230614
[2]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[3]   Measurement of the radiative and nonradiative decay rates of single CdSe nanocrystals through a controlled modification of their spontaneous emission [J].
Brokmann, X ;
Coolen, L ;
Dahan, M ;
Hermier, JP .
PHYSICAL REVIEW LETTERS, 2004, 93 (10) :107403-1
[4]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[5]  
Chance R., 1978, ADV CHEM PHYS, V37, P1, DOI DOI 10.1002/9780470142561.CH1
[6]   Power-law intermittency of single emitters [J].
Cichos, F. ;
von Borczyskowski, C. ;
Orrit, M. .
CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2007, 12 (06) :272-284
[7]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[8]   Emission intensity dependence and single-exponential behavior in single colloidal quantum dot fluorescence lifetimes [J].
Fisher, BR ;
Eisler, HJ ;
Stott, NE ;
Bawendi, MG .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (01) :143-148
[9]   Suppressed blinking in single quantum dots (QDs) immobilized near silver island films (SIFs) [J].
Fu, Yi ;
Zhang, Jian ;
Lakowicz, Joseph R. .
CHEMICAL PHYSICS LETTERS, 2007, 447 (1-3) :96-100
[10]   Counting graphene layers on glass via optical reflection microscopy [J].
Gaskell, P. E. ;
Skulason, H. S. ;
Rodenchuk, C. ;
Szkopek, T. .
APPLIED PHYSICS LETTERS, 2009, 94 (14)