Prospects for precision measurements on ammonia molecules in a fountain

被引:66
作者
Bethlem, H. L. [1 ,2 ]
Kajita, M. [3 ]
Sartakov, B. [4 ]
Meijer, G. [2 ]
Ubachs, W. [1 ]
机构
[1] Laser Ctr Vrije Univ, NL-1081 HV Amsterdam, Netherlands
[2] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany
[3] Natl Inst Informat & Commun Technol, Koganei, Tokyo 1848795, Japan
[4] RAS, Inst Gen Phys, Moscow 119991, Russia
关键词
D O I
10.1140/epjst/e2008-00809-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The recent demonstration of cooling and manipulation techniques for molecules offer new possibilities for precision measurements in molecules. Here, we present the design of a molecular fountain based on a Stark decelerated molecular beam. In this fountain, ammonia molecules are decelerated to a few meter per second, cooled to sub microKelvin temperatures and subsequently launched. The molecules fly upwards some 30 cm before falling back under gravity, thereby passing a microwave cavity twice - as they fly up and as they fall back down. The effective interrogation time in such a Ramsey type measurement scheme includes the entire flight time between the two traversals through the driving field, which is on the order of a 1/2 second. We present numerical simulations of the trajectories through the decelerator and estimate the expected count rate. We present an evaluation of the expected stability and accuracy for the inversion transition in (NH3)-N-15 around 22.6 GHz. The estimated frequency instability is 7 x 10(-12) tau(-1/2), with tau being the measurement time in seconds. With a careful design of the interogation zone, systematic frequency shifts are kept below 10(-14). Besides serving as a proof-of-principle, these measurements may be used as a test of the time-variation of fundamental constants using the sensitivity of the tunneling motion to a change of the proton-electron mass ratio.
引用
收藏
页码:55 / 69
页数:15
相关论文
共 37 条
[1]   THE B-1E'' STATE OF AMMONIA - SUB-DOPPLER SPECTROSCOPY AT VACUUM ULTRAVIOLET ENERGIES [J].
ASHFOLD, MNR ;
DIXON, RN ;
LITTLE, N ;
STICKLAND, RJ ;
WESTERN, CM .
JOURNAL OF CHEMICAL PHYSICS, 1988, 89 (04) :1754-1761
[2]   Deceleration and trapping of ammonia using time-varying electric fields [J].
Bethlem, HL ;
Crompvoets, FMH ;
Jongma, RT ;
van de Meerakker, SYT ;
Meijer, G .
PHYSICAL REVIEW A, 2002, 65 (05) :20
[3]   Production and application of translationally cold molecules [J].
Bethlem, HL ;
Meijer, G .
INTERNATIONAL REVIEWS IN PHYSICAL CHEMISTRY, 2003, 22 (01) :73-128
[4]   Cold atom clocks and applications [J].
Bize, S ;
Laurent, P ;
Abgrall, M ;
Marion, H ;
Maksimovic, I ;
Cacciapuoti, L ;
Grünert, J ;
Vian, C ;
dos Santos, FP ;
Rosenbusch, P ;
Lemonde, P ;
Santarelli, G ;
Wolf, P ;
Clairon, A ;
Luiten, A ;
Tobar, M ;
Salomon, C .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2005, 38 (09) :S449-S468
[5]   87Sr lattice clock with inaccuracy below 10-15 [J].
Boyd, Martin M. ;
Ludlow, Andrew D. ;
Blatt, Sebastian ;
Foreman, Seth M. ;
Ido, Tetsuya ;
Zelevinsky, Tanya ;
Ye, Jun .
PHYSICAL REVIEW LETTERS, 2007, 98 (08)
[6]   The cosmological evolution of the nucleon mass and the electroweak coupling constants [J].
Calmet, X ;
Fritzsch, H .
EUROPEAN PHYSICAL JOURNAL C, 2002, 24 (04) :639-642
[7]   Longitudinal focusing and cooling of a molecular beam [J].
Crompvoets, FMH ;
Jongma, RT ;
Bethlem, HL ;
van Roij, AJA ;
Meijer, G .
PHYSICAL REVIEW LETTERS, 2002, 89 (09) :930041-930044
[8]   Limit on the parity nonconserving energy difference between the enantiomers of a chiral molecule by laser spectroscopy [J].
Daussy, C ;
Marrel, T ;
Amy-Klein, A ;
Nguyen, CT ;
Bordé, CJ ;
Chardonnet, C .
PHYSICAL REVIEW LETTERS, 1999, 83 (08) :1554-1557
[9]   Using molecules to measure nuclear spin-dependent parity violation [J].
DeMille, D. ;
Cahn, S. B. ;
Murphree, D. ;
Rahmlow, D. A. ;
Kozlov, M. G. .
PHYSICAL REVIEW LETTERS, 2008, 100 (02)
[10]   Quo vadis, cold molecules? [J].
Doyle, J ;
Friedrich, B ;
Krems, RV ;
Masnou-Seeuws, F .
EUROPEAN PHYSICAL JOURNAL D, 2004, 31 (02) :149-164