Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production

被引:309
作者
Alonso-Gutierrez, Jorge [1 ,2 ]
Chan, Rossana [1 ,2 ]
Batth, Tanveer S. [1 ,2 ]
Adams, Paul D. [1 ,2 ]
Keasling, Jay D. [1 ,2 ,3 ,4 ]
Petzold, Christopher J. [1 ,2 ]
Lee, Taek Soon [1 ,2 ]
机构
[1] Joint Bioenergy Inst, Emeryville, CA 94608 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
关键词
Limonene; Perillyl alcohol; Mevalonate pathway; Microbial production; Metabolic engineering; Escherichia coli; HETEROLOGOUS MEVALONATE PATHWAY; GENE; PROTEIN; OPTIMIZATION; MONOTERPENES; EXPRESSION; TERPENOIDS; SYNTHASE; THERAPY; PLASMID;
D O I
10.1016/j.ymben.2013.05.004
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Limonene is a valuable monoterpene used in the production of several commodity chemicals and medicinal compounds. Among them, perillyl alcohol (FOR) is a promising anti-cancer agent that can be produced by hydroxylation of limonene. We engineered E. coli with a heterologous mevalonate pathway and limonene synthase for production of limonene followed by coupling with a cytochrome P450, which specifically hydroxylates limonene to produce FOR. A strain containing all mevalonate pathway genes in a single plasmid produced limonene at titers over 400 mg/L from glucose, substantially higher than has been achieved in the past. Incorporation of a cytochrome P450 to hydroxylate limonene yielded approximately 100 mg/L of FOR. Further metabolic engineering of the pathway and in situ product recovery using anion exchange resins would make this engineered E. cob a potential production platform for any valuable limonene derivative. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:33 / 41
页数:9
相关论文
共 44 条
[1]   Construction of lycopene-overproducing E-coli strains by combining systematic and combinatorial gene knockout targets [J].
Alper, H ;
Miyaoku, K ;
Stephanopoulos, G .
NATURE BIOTECHNOLOGY, 2005, 23 (05) :612-616
[2]   BglBricks: A flexible standard for biological part assembly [J].
Anderson J.C. ;
Dueber J.E. ;
Leguia M. ;
Wu G.C. ;
Arkin A.P. ;
Keasling J.D. .
Journal of Biological Engineering, 4 (1)
[3]   Optimization of the mevalonate-based isoprenoid biosynthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha-4,11-diene [J].
Anthony, Jennifer R. ;
Anthony, Larry C. ;
Nowroozi, Farnaz ;
Kwon, Gina ;
Newman, Jack D. ;
Keasling, Jay D. .
METABOLIC ENGINEERING, 2009, 11 (01) :13-19
[4]  
Batth Tanveer S, 2012, Methods Mol Biol, V944, P237, DOI 10.1007/978-1-62703-122-6_17
[5]   PLASMID-ENCODED PROTEIN - THE PRINCIPAL FACTOR IN THE METABOLIC BURDEN ASSOCIATED WITH RECOMBINANT BACTERIA [J].
BENTLEY, WE ;
MIRJALILI, N ;
ANDERSEN, DC ;
DAVIS, RH ;
KOMPALA, DS .
BIOTECHNOLOGY AND BIOENGINEERING, 1990, 35 (07) :668-681
[6]  
Bomgardner M, 2011, CHEM ENG NEWS, V89, P21
[7]   The role of lateral gene transfer in the evolution of isoprenoid biosynthesis pathways [J].
Boucher, Y ;
Doolittle, WF .
MOLECULAR MICROBIOLOGY, 2000, 37 (04) :703-716
[8]   Geranyl diphosphate synthase from Abies grandis:: cDNA isolation, functional expression, and characterization [J].
Burke, C ;
Croteau, R .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2002, 405 (01) :130-136
[9]  
CALOS MP, 1978, NATURE, V274, P762, DOI 10.1038/274762a0
[10]   ANALYSIS OF GENE-CONTROL SIGNALS BY DNA-FUSION AND CLONING IN ESCHERICHIA-COLI [J].
CASADABAN, MJ ;
COHEN, SN .
JOURNAL OF MOLECULAR BIOLOGY, 1980, 138 (02) :179-207