Streptococcal viability and diminished stress tolerance in mutants lacking the signal recognition particle pathway or YidC2

被引:91
作者
Hasona, A
Crowley, PJ
Levesque, CM
Mair, RW
Cvitkovitch, DG
Bleiweis, AS
Brady, LJ
机构
[1] Univ Florida, Dept Oral Biol, Gainesville, FL 32610 USA
[2] Univ Toronto, Dent Res Inst, Toronto, ON M5G 1G6, Canada
关键词
protein translocation; streptococcus; Ffh; FtsY; membrane biogenesis;
D O I
10.1073/pnas.0508778102
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The signal recognition particle (SRP)-translocation pathway is conserved in all three domains of life and delivers membrane and secretory proteins to the cytoplasmic membrane or endoplasmic reticulum. We determined the requirement in the cariogenic oral pathogen Streptocococcus mutans of the three universally conserved elements of the SRP pathway: Ffh/SRP54, scRNA, and FtsY/SR alpha. Previously, we reported that insertional interruption of S. mutans ffh was not lethal, but resulted in acid sensitivity. To test whether S. mutans could survive extensive disruption of the SIRP pathway, single and double deletions of genes encoding Ffh, scRNA, and FtsY were generated. Without environmental stressors, all mutant strains were viable, but unlike the wild-type, none could initiate growth at pH 5.0 or in 3.5% NaCl. Survival of challenge with 0.3 mM H2O2 was also diminished without ffh. Members of the YidC/Oxa1/Alb3 family are also ubiquitous, involved in the translocation and assembly of membrane proteins, and have been identified in prokaryotes/mitochondria/chloroplasts. Two genes encoding YidC homologs, YidC1 and YidC2, are present in streptococcal genomes with both expressed in S. mutans. Deletion of YidC1 demonstrated no obvious phenotype. Elimination of YidC2 resulted in a stress-sensitive phenotype similar to SRP pathway mutants. Mutants lacking both YidC2 and SIRP components were severely impaired and barely able to grow, even in the absence of environmental stress. Here, we report the dispensability of the cotranslational SRP protein translocation system in a bacterium. in S. mutans, this pathway contributes to protection against rapid environmental challenge and may overlap functionally with YidC2.
引用
收藏
页码:17466 / 17471
页数:6
相关论文
共 64 条
[1]   Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen [J].
Ajdic, D ;
McShan, WM ;
McLaughlin, RE ;
Savic, G ;
Chang, J ;
Carson, MB ;
Primeaux, C ;
Tian, RY ;
Kenton, S ;
Jia, HG ;
Lin, SP ;
Qian, YD ;
Li, SL ;
Zhu, H ;
Najar, F ;
Lai, HS ;
White, J ;
Roe, BA ;
Ferretti, JJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (22) :14434-14439
[2]   The Saccharomyces cerevisiae OXA1 gene is required for the correct assembly of cytochrome c oxidase and oligomycin-sensitive ATP synthase [J].
Altamura, N ;
Capitanio, N ;
Bonnefoy, N ;
Papa, S ;
Dujardin, G .
FEBS LETTERS, 1996, 382 (1-2) :111-115
[3]   Virulence properties of Streptococcus mutans [J].
Banas, JA .
FRONTIERS IN BIOSCIENCE-LANDMARK, 2004, 9 :1267-1277
[4]   Crystal structure of the ribonucleoprotein core of the signal recognition particle [J].
Batey, RT ;
Rambo, RP ;
Lucast, L ;
Rha, B ;
Doudna, JA .
SCIENCE, 2000, 287 (5456) :1232-+
[5]   ACID TOLERANCE, PROTON PERMEABILITIES, AND MEMBRANE ATPASES OF ORAL STREPTOCOCCI [J].
BENDER, GR ;
SUTTON, SVW ;
MARQUIS, RE .
INFECTION AND IMMUNITY, 1986, 53 (02) :331-338
[7]   Trigger factor binds to ribosome-signal-recognition particle (SRP) complexes and is excluded by binding of the SRP receptor [J].
Buskiewicz, I ;
Deuerling, E ;
Gu, SQ ;
Jöckel, J ;
Rodnina, MV ;
Bukau, B ;
Wintermeyer, W .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (21) :7902-7906
[8]   The general protein secretory pathway: phylogenetic analyses leading to evolutionary conclusions [J].
Cao, TB ;
Saier, MH .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2003, 1609 (01) :115-125
[9]   REQUIREMENT OF GTP HYDROLYSIS FOR DISSOCIATION OF THE SIGNAL RECOGNITION PARTICLE FROM ITS RECEPTOR [J].
CONNOLLY, T ;
RAPIEJKO, PJ ;
GILMORE, R .
SCIENCE, 1991, 252 (5009) :1171-1173
[10]   An ffh mutant of Streptococcus mutans is viable and able to physiologically adapt to low pH in continuous culture [J].
Crowley, PJ ;
Svensäter, G ;
Snoep, JL ;
Bleisweis, AS ;
Brady, LJ .
FEMS MICROBIOLOGY LETTERS, 2004, 234 (02) :315-324