Generalized kinetic (Boltzmann) models: Mathematical structures and applications

被引:94
作者
Arlotti, L
Bellomo, N
De Angelis, E
机构
[1] Univ Udine, Dept Civil Engn, I-33100 Udine, Italy
[2] Politecn Torino, Dept Math, I-10129 Turin, Italy
关键词
generalized Boltzmann equation; kinetic theory; population dynamics; gas mixtures; Cauchy problem;
D O I
10.1142/S0218202502001799
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the development of suitable general mathematical structures including a large variety of Boltzmann type models. The contents axe organized in three parts. The first part is devoted to modeling the above general framework. The second part to the development of specific models of interest in applied sciences. The third part develops a critical analysis towards research perspectives both on modeling and analytic problems.
引用
收藏
页码:567 / 591
页数:25
相关论文
共 56 条
[41]  
JAGER E, 1992, SIAM J APPL MATH, V52, P1442
[42]  
KIRKILIONIS M, 2001, MATH MOD METH APPL S, V8, P1101
[43]   Nonlocal bilinear equations. Equilibrium solutions and diffusive limit [J].
Lachowicz, M ;
Wrzosek, D .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2001, 11 (08) :1393-1409
[44]   The Lifshitz-Slyozov equation with encounters [J].
Laurençot, P .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2001, 11 (04) :731-748
[45]   Mathematical modeling of capillary formation and development in tumor angiogenesis: Penetration into the stroma [J].
Levine, HA ;
Pamuk, S ;
Sleeman, BD ;
Nilsen-Hamilton, M .
BULLETIN OF MATHEMATICAL BIOLOGY, 2001, 63 (05) :801-863
[46]  
Lions PL, 2001, ARCH RATION MECH AN, V158, P173, DOI 10.1007/s002050100143
[47]  
LONGO E, 1999, APPL MATH LETT, V8, P47
[48]   Diffusion of electrons by multicharged ions [J].
Lucquin-Desreux, B .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2000, 10 (03) :409-440
[49]  
MAMONTOV Y, 2001, HIGH DIMENSIONAL NON
[50]  
MAMONTOV YV, IN PRESS COMP MATH M