Control of the Motion of Nanoelectromechanical Systems Based on Carbon Nanotubes by Electric Fields

被引:10
作者
Ershova, O. V. [1 ]
Lozovik, Yu. E. [2 ]
Popov, A. M. [2 ]
Bubel', O. N. [3 ]
Kislyakov, E. F. [3 ]
Poklonskii, N. A. [3 ]
Knizhnik, A. A. [4 ]
Lebedeva, I. V. [1 ,4 ]
机构
[1] Moscow Inst Phys & Technol, Dolgoprudnyi 141701, Moscow Oblast, Russia
[2] Russian Acad Sci, Inst Spect, Troitsk 142190, Moscow Oblast, Russia
[3] Belarusian State Univ, Minsk 220030, BELARUS
[4] Russian Res Ctr, Kurchatov Inst, Moscow 123182, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1134/S1063776108100130
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A new method is proposed for controlling the motion of nanoelectromechanical systems based on carbon nanotubes. In this method, a single-walled nanotube acquires an electric dipole moment owing to the chemical adsorption of atoms or molecules at open ends of the nanotube. The electric dipole moments of carbon nanotubes with chemically modified ends are calculated by the molecular orbital method. These nanotubes can be set in motion under the effect of a nonuniform electric field. The possibility of controlling the motion of nanoelectromechanical systems with the proposed method is demonstrated using a nanotube-based gigahertz oscillator as an example. The operating characteristics of the gigahertz oscillator are analyzed, and its operation is simulated by the molecular dynamics method. The controlling parameters and characteristics corresponding to the controlled operating conditions at a constant frequency for the system under investigation are determined.
引用
收藏
页码:653 / 661
页数:9
相关论文
共 45 条
[21]  
Lozovik YE, 2004, FULLER NANOTUB CAR N, V12, P463, DOI [10.1081/FST-120027208, 10.1081/FST-12002708]
[22]   Nanomachines based on carbon nanotubes [J].
Lozovik, YE ;
Minogin, A ;
Popov, AM .
PHYSICS LETTERS A, 2003, 313 (1-2) :112-121
[23]   Possible nanomachines: Nanotube walls as movable elements [J].
Lozovik, YE ;
Minogin, AV ;
Popov, AM .
JETP LETTERS, 2003, 77 (11) :631-635
[24]   Nanotube-based nanoelectromechanical systems [J].
Lozovik, Yu. E. ;
Nikolaev, A. G. ;
Popov, A. M. .
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2006, 103 (03) :449-462
[25]   A tribological study of double-walled and triple-walled carbon nanotube oscillators [J].
Ma, CC ;
Zhao, Y ;
Yam, CY ;
Chen, GH ;
Jiang, Q .
NANOTECHNOLOGY, 2005, 16 (08) :1253-1264
[26]   Concept of nonvolatile memory based on multiwall carbon nanotubes [J].
Maslov, Leonid .
NANOTECHNOLOGY, 2006, 17 (10) :2475-2482
[27]   Nanoelectromechanical systems based on multi-walled nanotubes: nanothermometer, nanorelay, and nanoactuator [J].
Popov, Andrey M. ;
Bichoutskaia, Elena ;
Lozovik, Yurii E. ;
Kulish, Anton S. .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2007, 204 (06) :1911-1917
[28]   The oscillatory damped behaviour of incommensurate double-walled carbon nanotubes [J].
Rivera, JL ;
McCabe, C ;
Cummings, PT .
NANOTECHNOLOGY, 2005, 16 (02) :186-198
[29]   Oscillatory behavior of double-walled nanotubes under extension: A simple nanoscale damped spring [J].
Rivera, JL ;
McCabe, C ;
Cummings, PT .
NANO LETTERS, 2003, 3 (08) :1001-1005
[30]   Anomalous potential barrier of double-wall carbon nanotube [J].
Saito, R ;
Matsuo, R ;
Kimura, T ;
Dresselhaus, G ;
Dresselhaus, MS .
CHEMICAL PHYSICS LETTERS, 2001, 348 (3-4) :187-193