Cycle life evaluation of 3 Ah LixMn2O4-based lithium-ion secondary cells for low-earth-orbit satellites II. Harvested electrode examination

被引:13
作者
Brown, Shelley [1 ]
Ogawa, Keita [2 ]
Kumeuchi, Youichi [3 ]
Enomoto, Shinsuke [3 ]
Uno, Masatoshi [4 ]
Saito, Hirobumi [4 ]
Sone, Yoshitsugu [4 ]
Abraham, Daniel [5 ]
Lindbergh, Goran [1 ]
机构
[1] Royal Inst Technol, Dept Chem Engn & Technol, Sch Chem Sci & Engn, SE-10044 Stockholm, Sweden
[2] Adv Engn Serv Co Ltd, Tsukuba, Ibaraki 3050032, Japan
[3] NEC Tokin Corp, Kanagawa 2291198, Japan
[4] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Kanagawa 2298510, Japan
[5] Argonne Natl Lab, Div Chem Engn, Argonne, IL 60439 USA
关键词
Lithium-ion; LEO satellite; Ageing; Porous electrode; Impedance; Three-electrode measurement;
D O I
10.1016/j.jpowsour.2008.07.071
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium-ion batteries area candidate for the energy storage system onboard low-earth-orbit satellites. Terrestrial experiments are able to capture the performance degradation of cells in orbit, therefore providing the opportunity for lifetime investigations. The lifetime performance of 3 Ah commercial LixMn2O4-based pouch cells was evaluated in a matrix of different cycling depths-of-discharge (DODs: 0, 20,40%) and temperatures (25, 45 degrees C). Aged cells were disassembled and the electrochemical performance of harvested electrodes investigated with two- and three-electrode pouch cells. The positive electrode had a larger decrease in capacity than the negative electrode. Both the positive and negative electrode contributed to the increase of cell impedance measured at high states-of-charge (SOCs). The data at low SOCs indicated that the increase of cell impedance was associated with the positive electrode, which showed a significant increase in the magnitude of the high-frequency semi-circle. This SOC-dependence was observed for cells cycled for either extended periods of time or at higher temperatures with a 40% DOD swing. Low-current cycling of positive electrodes revealed a change in the second potential plateau, possibly reflecting a structural change of the LixMn2O4. This could impact on the electrode kinetics and provide a possible explanation for the SOC-dependent change of the impedance. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1454 / 1464
页数:11
相关论文
共 56 条
[1]   Temperature dependence of capacity and impedance data from fresh and aged high-power lithium-ion cells [J].
Abraham, D. P. ;
Reynolds, E. M. ;
Schultz, P. L. ;
Jansen, A. N. ;
Dees, D. W. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (08) :A1610-A1616
[2]   Application of a lithium-tin reference electrode to determine electrode contributions to impedance rise in high-power lithium-ion cells [J].
Abraham, DP ;
Poppen, SD ;
Jansen, AN ;
Liu, J ;
Dees, DW .
ELECTROCHIMICA ACTA, 2004, 49 (26) :4763-4775
[3]   Materials' effects on the elevated and room temperature performance of C/LiMn2O4 Li-ion batteries [J].
Amatucci, GG ;
Schmutz, CN ;
Blyr, A ;
Sigala, C ;
Gozdz, AS ;
Larcher, D ;
Tarascon, JM .
JOURNAL OF POWER SOURCES, 1997, 69 (1-2) :11-25
[4]   Surface treatments of Li1+xMn2-xO4 spinels for improved elevated temperature performance [J].
Amatucci, GG ;
Blyr, A ;
Sigala, C ;
Alfonse, P ;
Tarascon, JM .
SOLID STATE IONICS, 1997, 104 (1-2) :13-25
[5]   Failure mechanism and improvement of the elevated temperature cycling of LiMn2O4 compounds through the use of the LiAlxMn2-xO4-zFz solid solution [J].
Amatucci, GG ;
Pereira, N ;
Zheng, T ;
Tarascon, JM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (02) :A171-A182
[6]   Mechanisms of manganese spinels dissolution and capacity fade at high temperature [J].
Aoshima, T ;
Okahara, K ;
Kiyohara, C ;
Shizuka, K .
JOURNAL OF POWER SOURCES, 2001, 97-8 :377-380
[7]   Electronic structure, chemical bonding, and vibronic coupling in MnIV/MnIII mixed valent LixMn2O4 spinels and their effect on the dynamics of intercalated Li:: A cluster study using DFT [J].
Atanasov, M ;
Barras, JL ;
Benco, L ;
Daul, C .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (19) :4718-4728
[8]   Capacity fading of LixMn2O4 spinel electrodes studied by XRD and electroanalytical techniques [J].
Aurbach, D ;
Levi, MD ;
Gamulski, K ;
Markovsky, B ;
Salitra, G ;
Levi, E ;
Heider, U ;
Heider, L ;
Oesten, R .
JOURNAL OF POWER SOURCES, 1999, 81 :472-479
[9]   Review on electrode-electrolyte solution interactions, related to cathode materials for Li-ion batteries [J].
Aurbach, Doron ;
Markovsky, Boris ;
Salitra, Gregory ;
Markevich, Elena ;
Talyossef, Yossi ;
Koltypin, Maxim ;
Nazar, Linda ;
Ellis, Brian ;
Kovacheva, Daniella .
JOURNAL OF POWER SOURCES, 2007, 165 (02) :491-499
[10]  
Barsoukov E, 2005, IMPEDANCE SPECTROSCOPY: THEORY, EXPERIMENT, AND APPLICATIONS, 2ND EDITION, pXII