The Arabidopsis Aux/IAA protein family has diversified in degradation and auxin responsiveness

被引:269
作者
Dreher, KA
Brown, J
Saw, RE
Callis, J [1 ]
机构
[1] Univ Calif Davis, Plant Biol Grad Grp Program, Davis, CA 95616 USA
[2] Univ Calif Davis, Sect Mol & Cellular Biol, Davis, CA 95616 USA
关键词
D O I
10.1105/tpc.105.039172
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Rapid, auxin-responsive degradation of multiple auxin/indole-3-acetic acid (Aux/IAA) proteins is essential for plant growth and development. Domain II residues were previously shown to be required for the degradation of several Arabidopsis thaliana Aux/IAA proteins. We examined the degradation of additional full-length family members and the proteolytic importance of N-terminal residues outside domain II using luciferase (LUC) fusions. Elimination of domain I did not affect degradation. However, substituting an Arg for a conserved Lys between domains I and II specifically impaired basal degradation without compromising the auxin-mediated acceleration of degradation. IAA8, IAA9, and IAA28 contain domain II and a conserved Lys, but they were degraded more slowly than previously characterized family members when expressed as LUC fusions, suggesting that sequences outside domain II influence proteolysis. We analyzed the degradation of IAA31, with a region somewhat similar to domain II but without the conserved Lys, and of IAA20, which lacks domain II and the conserved Lys. Both IAA20: LUC and epitope-tagged IAA20 were long-lived, and their longevity was not influenced by auxin. Epitope-tagged IAA31 was long-lived, like IAA20, but by contrast, it showed accelerated degradation in response to auxin. The existence of long-lived and auxin-insensitive Aux/IAA proteins suggests that they may play a novel role in auxin signaling.
引用
收藏
页码:699 / 714
页数:16
相关论文
共 59 条
[11]   Auxin signaling and regulated protein degradation [J].
Dharmasiri, N ;
Estelle, M .
TRENDS IN PLANT SCIENCE, 2004, 9 (06) :302-308
[12]   Plant development is regulated by a family of auxin receptor F box proteins [J].
Dharmasiri, N ;
Dharmasiri, S ;
Weijers, D ;
Lechner, E ;
Yamada, M ;
Hobbie, L ;
Ehrismann, JS ;
Jürgens, G ;
Estelle, M .
DEVELOPMENTAL CELL, 2005, 9 (01) :109-119
[13]   The F-box protein TIR1 is an auxin receptor [J].
Dharmasiri, N ;
Dharmasiri, S ;
Estelle, M .
NATURE, 2005, 435 (7041) :441-445
[14]   Predicting subcellular localization of proteins based on their N-terminal amino acid sequence [J].
Emanuelsson, O ;
Nielsen, H ;
Brunak, S ;
von Heijne, G .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 300 (04) :1005-1016
[15]   A 'distributed degron' allows regulated entry into the ER degradation pathway [J].
Gardner, RG ;
Hampton, RY .
EMBO JOURNAL, 1999, 18 (21) :5994-6004
[16]  
GLOTZER M, 1991, NATURE, V349, P132, DOI 10.1038/349132a0
[17]   Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins [J].
Gray, WM ;
Kepinski, S ;
Rouse, D ;
Leyser, O ;
Estelle, M .
NATURE, 2001, 414 (6861) :271-276
[18]   Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana [J].
Gray, WM ;
del Pozo, JC ;
Walker, L ;
Hobbie, L ;
Risseeuw, E ;
Banks, T ;
Crosby, WL ;
Yang, M ;
Ma, H ;
Estelle, M .
GENES & DEVELOPMENT, 1999, 13 (13) :1678-1691
[19]   Mdm2 promotes the rapid degradation of p53 [J].
Haupt, Y ;
Maya, R ;
Kazaz, A ;
Oren, M .
NATURE, 1997, 387 (6630) :296-299
[20]   pGreen:: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation [J].
Hellens, RP ;
Edwards, EA ;
Leyland, NR ;
Bean, S ;
Mullineaux, PM .
PLANT MOLECULAR BIOLOGY, 2000, 42 (06) :819-832