An improved state-parameter analysis of ecosystem models using data assimilation

被引:29
作者
Chen, M. [1 ]
Liu, S. [1 ]
Tieszen, L. L.
Hollinger, D. Y. [2 ]
机构
[1] USGS, SAIC, Ctr Earth Resources Observat & Sci, Sioux Falls, SD 57198 USA
[2] USDA Forest Serv, No Res Stn, Durham, NH 03824 USA
关键词
Gross primary production; Ecosystem respiration; Net ecosystem exchange; Smoothed ensemble Kalman filter; AmeriFlux data;
D O I
10.1016/j.ecolmodel.2008.07.013
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Much of the effort spent in developing data assimilation methods for carbon dynamics analysis has focused on estimating optimal values for either model parameters or state variables. The main weakness of estimating parameter values alone (i.e., without considering state variables) is that all errors from input, output, and model structure are attributed to model parameter uncertainties. On the other hand, the accuracy of estimating state variables may be lowered if the temporal evolution of parameter values is not incorporated. This research develops a smoothed ensemble Kalman filter (SEnKF) by combining ensemble Kalman filter with kernel smoothing technique. SEnKF has following characteristics: (1) to estimate simultaneously the model states and parameters through concatenating unknown parameters and state variables into a joint state vector; (2) to mitigate dramatic, sudden changes of parameter values in parameter sampling and parameter evolution process, and control narrowing of parameter variance which results in filter divergence through adjusting smoothing factor in kernel smoothing algorithm; (3) to assimilate recursively data into the model and thus detect possible time variation of parameters; and (4) to address properly various sources of uncertainties stemming from input, output and parameter uncertainties. The SEnKF is tested by assimilating observed fluxes of carbon dioxide and environmental driving factor data from an AmeriFlux forest station located near Howland, Maine, USA, into a partition eddy flux model. Our analysis demonstrates that model parameters, such as light use efficiency, respiration coefficients, minimum and optimum temperatures for photosynthetic activity, and others, are highly constrained by eddy flux data at daily-to-seasonal time scales. The SEnKF stabilizes parameter values quickly regardless of the initial values of the parameters. Potential ecosystem light use efficiency demonstrates a strong seasonality. Results show that the simultaneous parameter estimation procedure significantly improves model predictions. Results also show that the SEnKF can dramatically reduce the variance in state variables stemming from the uncertainty of parameters and driving variables. The SEnKF is a robust and effective algorithm in evaluating and developing ecosystem models and in improving the understanding and quantification of carbon cycle parameters and processes. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:317 / 326
页数:10
相关论文
共 30 条
[11]   Estimating diurnal to annual ecosystem parameters by synthesis of a carbon flux model with eddy covariance net ecosystem exchange observations [J].
Braswell, BH ;
Sacks, WJ ;
Linder, E ;
Schimel, DS .
GLOBAL CHANGE BIOLOGY, 2005, 11 (02) :335-355
[12]  
Evensen G, 1997, MON WEATHER REV, V125, P1342, DOI 10.1175/1520-0493(1997)125<1342:ADAFSN>2.0.CO
[13]  
2
[14]  
Evensen G, 2000, MON WEATHER REV, V128, P1852, DOI 10.1175/1520-0493(2000)128<1852:AEKSFN>2.0.CO
[15]  
2
[17]  
Evensen G., 2003, Ocean Dyn, V53, P343, DOI [DOI 10.1007/S10236-003-0036-9, 10.1007/s10236-003-0036-9]
[18]   Application of a dual unscented Kalman filter for simultaneous state and parameter estimation in problems of surface-atmosphere exchange [J].
Gove, JH ;
Hollinger, DY .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2006, 111 (D8)
[19]   Uncertainty in eddy covariance measurements and its application to physiological models [J].
Hollinger, DY ;
Richardson, AD .
TREE PHYSIOLOGY, 2005, 25 (07) :873-885
[20]   Spatial and temporal variability in forest-atmosphere CO2 exchange [J].
Hollinger, DY ;
Aber, J ;
Dail, B ;
Davidson, EA ;
Goltz, SM ;
Hughes, H ;
Leclerc, MY ;
Lee, JT ;
Richardson, AD ;
Rodrigues, C ;
Scott, NA ;
Achuatavarier, D ;
Walsh, J .
GLOBAL CHANGE BIOLOGY, 2004, 10 (10) :1689-1706