Surface acoustic cavitation understood via nanosecond electrochemistry. 2. The motion of acoustic bubbles

被引:42
作者
Maisonhaute, E [1 ]
Brookes, BA [1 ]
Compton, RG [1 ]
机构
[1] Univ Oxford, Phys & Theoret Chem Lab, Oxford OX1 3QZ, England
关键词
D O I
10.1021/jp013448a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Acoustic cavitation considerably enhances the mass transport toward a surface. When suitably fast electrochemical equipment is used, periodic peak currents can be observed. Previous observations attributed these peaks to diffusion inside a thin liquid layer present between the electrode and the bubble (Maisonhaute, E.: White, P.C; Compton, R. G. J. Phys. Chem. B 2001, 105, 12087-12091). This paper provides a semiquantitative model for explaining the bubble behavior, leading to an estimation of the diffusion layer thickness as well as the time during which the bubble "discovers" the electrode. Layer thicknesses ranging from 25 nm for very high acoustic pressures up to ca. 60 rim for smaller ones are found. Collapse velocities are estimated to be more than hundreds meters per second. Moreover, between two collapses, a slow bubble movement apart from the surface is evidenced. The force balance responsible for the collapse is reexamined and the viscosity constraint found to be an important parameter in explaining the global behavior.
引用
收藏
页码:3166 / 3172
页数:7
相关论文
共 26 条