Coordination of transcription, RNA processing, and surveillance by P-TEFb kinase on heat shock genes

被引:200
作者
Ni, ZY
Schwartz, BE
Werner, J
Suarez, JR
Lis, JT
机构
[1] Cornell Univ, Dept Mol Biol & Genet, Ithaca, NY 14853 USA
[2] Aventis Pharmaceut Inc, Bridgewater, NJ 08807 USA
关键词
D O I
10.1016/S1097-2765(03)00526-4
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Positive transcription elongation factor b (P-TEFb) is a kinase that phosphorylates the carboxyl-terminal domain (CTD) of RNA Polymerase II (Pol II). Here, we show that flavopiridol, a highly specific P-TEFb kinase inhibitor, dramatically reduces the global levels of Ser2-but not Ser5-phosphorylated CTD at actively transcribed loci on Drosophila polytene chromosomes under both normal and heat shocked conditions. Brief treatment of Drosophila cells with flavopiridol leads to a reduction in the accumulation of induced hsp70 and hsp26 RNAs. Surprisingly, the density of transcribing Pol II and Pol II progression through hsp70 in vivo are nearly normal in flavopiridol-treated cells. The major defect in expression is at the level of 3' end processing. A similar but more modest 3' processing defect was also observed for hsp26. We propose that P-TEFb phosphorylation of Pol II CTD coordinates transcription elongation with 3' end processing, and failure to do so leads to rapid RNA degradation.
引用
收藏
页码:55 / 65
页数:11
相关论文
共 54 条
[1]   Phosphorylation of serine 2 within the RNA polymerase IIC-terminal domain couples transcription and 3′ end processing [J].
Ahn, SH ;
Kim, M ;
Buratowski, S .
MOLECULAR CELL, 2004, 13 (01) :67-76
[2]   REQUIREMENT FOR TFIIH KINASE-ACTIVITY IN TRANSCRIPTION BY RNA-POLYMERASE-II [J].
AKOULITCHEV, S ;
MAKELA, TP ;
WEINBERG, RA ;
REINBERG, D .
NATURE, 1995, 377 (6549) :557-560
[3]   High-resolution localization of Drosophila Spt5 and Spt6 at heat shock genes in vivo:: roles in promoter proximal pausing and transcription elongation [J].
Andrulis, ED ;
Guzmán, E ;
Döring, P ;
Werner, J ;
Lis, JT .
GENES & DEVELOPMENT, 2000, 14 (20) :2635-2649
[4]   The RNA processing exosome is linked to elongating RNA polymerase II in Drosophila [J].
Andrulis, ED ;
Werner, J ;
Nazarian, A ;
Erdjument-Bromage, H ;
Tempst, P ;
Lis, JT .
NATURE, 2002, 420 (6917) :837-841
[5]   Cleavage/polyadenylation factor IA associates with the carboxyl-terminal domain of RNA polymerase II in Saccharomyces cerevisiae [J].
Barillà, D ;
Lee, BA ;
Proudfoot, NJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (02) :445-450
[6]   Multiple isoforms of GAGA factor, a critical component of chromatin structure [J].
Benyajati, C ;
Mueller, L ;
Xu, N ;
Pappano, M ;
Gao, J ;
Mosammaparast, M ;
Conklin, D ;
Granok, H ;
Craig, C ;
Elgin, S .
NUCLEIC ACIDS RESEARCH, 1997, 25 (16) :3345-3353
[7]   Transcription factor and polymerase recruitment, modification, and movement on dhsp70 in vivo in the minutes following heat shock [J].
Boehm, AK ;
Saunders, A ;
Werner, J ;
Lis, JT .
MOLECULAR AND CELLULAR BIOLOGY, 2003, 23 (21) :7628-7637
[8]   Poly(A) polymerase phosphorylation is dependent on novel interactions with cyclins [J].
Bond, GL ;
Prives, C ;
Manley, JL .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (14) :5310-5320
[9]   Spt5 cooperates with human immunodeficiency virus type 1 Tat by preventing premature RNA release at terminator sequences [J].
Bourgeois, CF ;
Kim, YK ;
Churcher, MJ ;
West, MJ ;
Karn, J .
MOLECULAR AND CELLULAR BIOLOGY, 2002, 22 (04) :1079-1093
[10]   A nuclear 3′-5′ exonuclease involved in mRNA degradation interacts with poly(A) polymerase and the hnRNA protein Npl3p [J].
Burkard, KTD ;
Butler, JS .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (02) :604-616