Coordination of transcription, RNA processing, and surveillance by P-TEFb kinase on heat shock genes

被引:200
作者
Ni, ZY
Schwartz, BE
Werner, J
Suarez, JR
Lis, JT
机构
[1] Cornell Univ, Dept Mol Biol & Genet, Ithaca, NY 14853 USA
[2] Aventis Pharmaceut Inc, Bridgewater, NJ 08807 USA
关键词
D O I
10.1016/S1097-2765(03)00526-4
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Positive transcription elongation factor b (P-TEFb) is a kinase that phosphorylates the carboxyl-terminal domain (CTD) of RNA Polymerase II (Pol II). Here, we show that flavopiridol, a highly specific P-TEFb kinase inhibitor, dramatically reduces the global levels of Ser2-but not Ser5-phosphorylated CTD at actively transcribed loci on Drosophila polytene chromosomes under both normal and heat shocked conditions. Brief treatment of Drosophila cells with flavopiridol leads to a reduction in the accumulation of induced hsp70 and hsp26 RNAs. Surprisingly, the density of transcribing Pol II and Pol II progression through hsp70 in vivo are nearly normal in flavopiridol-treated cells. The major defect in expression is at the level of 3' end processing. A similar but more modest 3' processing defect was also observed for hsp26. We propose that P-TEFb phosphorylation of Pol II CTD coordinates transcription elongation with 3' end processing, and failure to do so leads to rapid RNA degradation.
引用
收藏
页码:55 / 65
页数:11
相关论文
共 54 条
[11]   Flavopiridol inhibits P-TEFb and blocks HIV-1 replication [J].
Chao, SH ;
Fujinaga, K ;
Marion, JE ;
Taube, R ;
Sausville, EA ;
Senderowicz, AM ;
Peterlin, BM ;
Price, DH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (37) :28345-28348
[12]   Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo [J].
Chao, SH ;
Price, DH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (34) :31793-31799
[13]   Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain [J].
Cho, EJ ;
Kobor, MS ;
Kim, M ;
Greenblatt, J ;
Buratowski, S .
GENES & DEVELOPMENT, 2001, 15 (24) :3319-3329
[14]   Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways [J].
Clemens, JC ;
Worby, CA ;
Simonson-Leff, N ;
Muda, M ;
Maehama, T ;
Hemmings, BA ;
Dixon, JE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (12) :6499-6503
[15]   Reversible phosphorylation of the C-terminal domain of RNA polymerase II [J].
Dahmus, ME .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (32) :19009-19012
[16]   Cooperation between RNA polymerase molecules in transcription elongation [J].
Epshtein, V ;
Nudler, E .
SCIENCE, 2003, 300 (5620) :801-805
[17]   Evidence that Spt4, Spt5, and Spt6, control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae [J].
Hartzog, GA ;
Wada, T ;
Handa, H ;
Winston, F .
GENES & DEVELOPMENT, 1998, 12 (03) :357-369
[18]   Quality control of mRNA 3′-end processing is linked to the nuclear exosome [J].
Hilleren, P ;
McCarthy, T ;
Rosbash, M ;
Parker, R ;
Jensen, TH .
NATURE, 2001, 413 (6855) :538-542
[19]   RNA polymerase II is an essential mRNA polyadenylation factor [J].
Hirose, Y ;
Manley, JL .
NATURE, 1998, 395 (6697) :93-96
[20]   Distinct roles for CTD Ser-2 and Ser-5 phosphorylation in the recruitment and allosteric activation of mammalian mRNA capping enzyme [J].
Ho, CK ;
Shuman, S .
MOLECULAR CELL, 1999, 3 (03) :405-411