Tokamak edge plasma simulation including anomalous cross-field convective transport

被引:44
作者
Pigarov, AY [1 ]
Krasheninnikov, SI
Rognlien, TD
Schaffer, MJ
West, WP
机构
[1] Univ Calif San Diego, La Jolla, CA 92037 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA
[3] Gen Atom Co, San Diego, CA 92186 USA
[4] RRC Kurchatov Inst, Moscow 123132, Russia
关键词
D O I
10.1063/1.1459059
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Multi-fluid two-dimensional transport models such as the UEDGE code model [T. D. Rognlien , J. Nucl. Mater. 196-198, 34 (1992)] are widely used in the simulation of tokamak edge plasmas. Usually these models are based on the assumption of anomalous plasma diffusion in the direction perpendicular to magnetic field lines. As will be shown, the pure diffusive cross-field transport model is inadequate and fails to match properly plasma parameters measured both in the scrape-off layer (SOL) and in the divertor of the DIII-D tokamak. Recently it has been suggested that specific nondiffusive transport occurs in the edge plasma [S. I. Krasheninnikov, Phys. Lett. A 283, 368 (2001)]. The nondiffusive transport is incorporated to the UEDGE model by adding the anomalous cross-field convective velocity for plasma species and by prescribing a specific two-dimensional profile to this velocity. A series of highly radiative discharges obtained on the DIII-D tokamak is analyzed using the UEDGE code with the hybrid, convective and diffusive, cross-field transport model. For these discharges, anomalous convective velocity profiles are adjusted until the simulated radial profiles agree with measurements in the SOL and in the divertor. It is found that in order to reproduce most of the extensive experimental data, anomalous plasma convection should play the dominant role in the outboard edge-plasma region. (C) 2002 American Institute of Physics.
引用
收藏
页码:1287 / 1299
页数:13
相关论文
共 37 条
[1]   Turbulence intermittency and burst properties in tokamak scrape-off layer [J].
Antar, GY ;
Devynck, P ;
Garbet, X ;
Luckhardt, SC .
PHYSICS OF PLASMAS, 2001, 8 (05) :1612-1624
[2]   Experimental evidence of intermittent convection in the edge of magnetic confinement devices [J].
Antar, GY ;
Krasheninnikov, SI ;
Devynck, P ;
Doerner, RP ;
Hollmann, EM ;
Boedo, JA ;
Luckhardt, SC ;
Conn, RW .
PHYSICAL REVIEW LETTERS, 2001, 87 (06) :65001-1
[3]   Transport by intermittent convection in the boundary of the DIII-D tokamak [J].
Boedo, JA ;
Rudakov, D ;
Moyer, R ;
Krasheninnikov, S ;
Whyte, D ;
McKee, G ;
Tynan, G ;
Schaffer, M ;
Stangeby, P ;
West, P ;
Allen, S ;
Evans, T ;
Fonck, R ;
Hollmann, E ;
Leonard, A ;
Mahdavi, A ;
Porter, G ;
Tillack, M ;
Antar, G .
PHYSICS OF PLASMAS, 2001, 8 (11) :4826-4833
[4]  
Braginskii S. I., 1965, REV PLASMA PHYS, V1, P205, DOI DOI 10.1088/0741-3335/47/10/005
[5]   Impurity release from low-Z materials under light particle bombardment [J].
Davis, JW ;
Haasz, AA .
JOURNAL OF NUCLEAR MATERIALS, 1997, 241 :37-51
[6]  
DIPPOLITO DA, IN PRESS PHYS PLASMA
[7]   MEASUREMENTS AND MODELING OF ELECTROSTATIC FLUCTUATIONS IN THE SCRAPE-OFF LAYER OF ASDEX [J].
ENDLER, M ;
NIEDERMEYER, H ;
GIANNONE, L ;
HOLZHAUER, E ;
RUDYJ, A ;
THEIMER, G ;
TSOIS, N .
NUCLEAR FUSION, 1995, 35 (11) :1307-1339
[8]   CONDITIONAL ANALYSIS OF FLOATING POTENTIAL FLUCTUATIONS AT THE EDGE OF THE TEXAS EXPERIMENTAL TOKAMAK UPGRADE (TEXT-U) [J].
FILIPPAS, AV ;
BENGSTON, RD ;
LI, GX ;
MEIER, M ;
RITZ, CP ;
POWERS, EJ .
PHYSICS OF PLASMAS, 1995, 2 (03) :839-845
[9]   THE EFFECT OF ELMS ON EDGE PLASMA SCALING IN DIII-D [J].
HILL, DN ;
FUTCH, A ;
LEONARD, AW ;
MAHDAVI, MA ;
PETRIE, TW ;
BUCHENAUER, D ;
CAMPBELL, R ;
CUTHBERTSON, JW ;
WATKINS, J ;
MOYER, R .
JOURNAL OF NUCLEAR MATERIALS, 1992, 196 :204-209
[10]   NUMERICAL-STUDIES OF IMPURITIES IN FUSION PLASMAS [J].
HULSE, RA .
NUCLEAR TECHNOLOGY-FUSION, 1983, 3 (02) :259-272