Tokamak edge plasma simulation including anomalous cross-field convective transport

被引:44
作者
Pigarov, AY [1 ]
Krasheninnikov, SI
Rognlien, TD
Schaffer, MJ
West, WP
机构
[1] Univ Calif San Diego, La Jolla, CA 92037 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA
[3] Gen Atom Co, San Diego, CA 92186 USA
[4] RRC Kurchatov Inst, Moscow 123132, Russia
关键词
D O I
10.1063/1.1459059
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Multi-fluid two-dimensional transport models such as the UEDGE code model [T. D. Rognlien , J. Nucl. Mater. 196-198, 34 (1992)] are widely used in the simulation of tokamak edge plasmas. Usually these models are based on the assumption of anomalous plasma diffusion in the direction perpendicular to magnetic field lines. As will be shown, the pure diffusive cross-field transport model is inadequate and fails to match properly plasma parameters measured both in the scrape-off layer (SOL) and in the divertor of the DIII-D tokamak. Recently it has been suggested that specific nondiffusive transport occurs in the edge plasma [S. I. Krasheninnikov, Phys. Lett. A 283, 368 (2001)]. The nondiffusive transport is incorporated to the UEDGE model by adding the anomalous cross-field convective velocity for plasma species and by prescribing a specific two-dimensional profile to this velocity. A series of highly radiative discharges obtained on the DIII-D tokamak is analyzed using the UEDGE code with the hybrid, convective and diffusive, cross-field transport model. For these discharges, anomalous convective velocity profiles are adjusted until the simulated radial profiles agree with measurements in the SOL and in the divertor. It is found that in order to reproduce most of the extensive experimental data, anomalous plasma convection should play the dominant role in the outboard edge-plasma region. (C) 2002 American Institute of Physics.
引用
收藏
页码:1287 / 1299
页数:13
相关论文
共 37 条
[22]   PLASMA BOUNDARY EXPERIMENTS ON DIII-D TOKAMAK [J].
MAHDAVI, MA ;
BROOKS, N ;
BUCHENAUER, D ;
FUTCH, A ;
HILL, DN ;
HOGAN, J ;
JACKSON, GL ;
LANGHORN, A ;
LEIKIND, B ;
LIPPMANN, S ;
LUXON, J ;
MATTHEWS, G ;
MENON, M ;
MIODUSZEWSKI, PK ;
OWEN, L ;
PETERSEN, P ;
PETRIE, T ;
RENSINK, M ;
STAMBAUGH, RD ;
SIMONEN, TC ;
STAEBLER, G .
JOURNAL OF NUCLEAR MATERIALS, 1990, 176 :32-43
[23]  
Moyer RA, 1997, J NUCL MATER, V241, P633, DOI 10.1016/S0022-3115(96)00578-8
[24]   Application of the collisional-radiative, atomic-molecular model to the recombining divertor plasma [J].
Pigarov, AY ;
Krasheninnikov, SI .
PHYSICS LETTERS A, 1996, 222 (04) :251-257
[25]   Detailed comparison of simulated and measured plasma profiles in the scrape-off layer and edge plasma of DIII-D [J].
Porter, GD ;
Isler, R ;
Boedo, J ;
Rognlien, TD .
PHYSICS OF PLASMAS, 2000, 7 (09) :3663-3680
[26]   Simulation of experimentally achieved DIII-D detached plasmas using the UEDGE code [J].
Porter, GD ;
Allen, SL ;
Brown, M ;
Fenstermacher, ME ;
Hill, DN ;
Jong, RA ;
Leonard, AW ;
Nilson, D ;
Rensink, ME ;
Rognlien, ID ;
Smith, GR .
PHYSICS OF PLASMAS, 1996, 3 (05) :1967-1975
[27]   A FULLY IMPLICIT, TIME-DEPENDENT 2-D FLUID CODE FOR MODELING TOKAMAK EDGE PLASMAS [J].
ROGNLIEN, TD ;
MILOVICH, JL ;
RENSINK, ME ;
PORTER, GD .
JOURNAL OF NUCLEAR MATERIALS, 1992, 196 :347-351
[28]  
SCHNEIDER R, 1992, J NUCL MATER, V196, P369
[29]   Three-dimensional computation of collisional drift wave turbulence and transport in tokamak geometry [J].
Scott, B .
PLASMA PHYSICS AND CONTROLLED FUSION, 1997, 39 (03) :471-504
[30]   MODELING IMPURITY CONTROL AT JET [J].
SIMONINI, R ;
TARONI, A ;
KEILHACKER, M ;
RADFORD, G ;
SPENCE, J ;
VLASES, G ;
WATKINS, ML ;
WEBER, S .
JOURNAL OF NUCLEAR MATERIALS, 1992, 196 :369-373