Goodness-of-fit tests for kernel regression with an application to option implied volatilities

被引:70
作者
Aït-Sahalia, Y [1 ]
Bickel, PJ
Stoker, TM
机构
[1] Princeton Univ, Dept Econ, Princeton, NJ 08544 USA
[2] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
[3] MIT, Sloan Sch Management, Cambridge, MA 02142 USA
基金
美国国家科学基金会;
关键词
goodness-of-fit; kernel regression; specification testing; implied volatility smile;
D O I
10.1016/S0304-4076(01)00091-4
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper proposes a test of a restricted specification of regression, based on comparing residual sum of squares from kernel regression. Our main case is where both the restricted specification. and the general model are nonparametric, with our test equivalently viewed as a test of dimension reduction. We discuss practical features of implementing the test, and variations applicable to testing parametric models as the null hypothesis, or semiparametric models that depend on a finite parameter vector as well as unknown functions. We apply our testing procedure to option prices; we reject a parametric version of the Black-Scholes formula but fail to reject a semiparametric version against a general nonparametric regression. (C) 2001 Elsevier Science S.A. All rights reserved.
引用
收藏
页码:363 / 412
页数:50
相关论文
共 54 条
[11]   PRICING OF OPTIONS AND CORPORATE LIABILITIES [J].
BLACK, F ;
SCHOLES, M .
JOURNAL OF POLITICAL ECONOMY, 1973, 81 (03) :637-654
[12]   Kernel regression in empirical microeconomics [J].
Blundell, R ;
Duncan, A .
JOURNAL OF HUMAN RESOURCES, 1998, 33 (01) :62-87
[13]   Consistent hypothesis testing in semiparametric and nonparametric models for econometric time series [J].
Chen, XH ;
Fan, YQ .
JOURNAL OF ECONOMETRICS, 1999, 91 (02) :373-401
[14]  
CHRISTOFFERSEN P, 1998, NONPARAMETRIC TESTIN
[15]   ON THE LIMIT BEHAVIOR OF A CHI-SQUARE TYPE TEST IF THE NUMBER OF CONDITIONAL MOMENTS TESTED APPROACHES INFINITY [J].
DEJONG, RM ;
BIERENS, HJ .
ECONOMETRIC THEORY, 1994, 10 (01) :70-90
[16]   Nonparametric estimation of global functionals and a measure of the explanatory power of covariates in regression [J].
Doksum, K ;
Samarov, A .
ANNALS OF STATISTICS, 1995, 23 (05) :1443-1473
[17]   A simple framework for nonparametric specification testing [J].
Ellison, G ;
Ellison, SF .
JOURNAL OF ECONOMETRICS, 2000, 96 (01) :1-23
[18]   TESTING THE GOODNESS OF FIT OF A LINEAR-MODEL VIA NONPARAMETRIC REGRESSION TECHNIQUES [J].
EUBANK, RL ;
SPIEGELMAN, CH .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1990, 85 (410) :387-392
[19]   Consistent model specification tests: Omitted variables and semiparametric functional forms [J].
Fan, YQ ;
Li, Q .
ECONOMETRICA, 1996, 64 (04) :865-890
[20]   TESTING THE GOODNESS-OF-FIT OF A PARAMETRIC DENSITY-FUNCTION BY KERNEL-METHOD [J].
FAN, YQ .
ECONOMETRIC THEORY, 1994, 10 (02) :316-356