Regulation of cell proliferation by Smad proteins

被引:386
作者
Ten Dijke, PT [1 ]
Goumans, MJ [1 ]
Itoh, F [1 ]
Itoh, S [1 ]
机构
[1] Netherlands Canc Inst, Div Cellular Biochem H3, NL-1066 CX Amsterdam, Netherlands
关键词
D O I
10.1002/jcp.10066
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Transforming growth factor-beta (TGF-beta) family members which include TGF-betas, activins, and bone morphogenetic proteins (BMPs) regulate a broad spectrum of biological responses on a large variety of cell types. TGF-beta family members initiate their cellular responses by binding to distinct receptors with intrinsic serine/threonine kinase activity and activation of specific downstream intracellular effectors termed Smad proteins. Smads relay the signal from the cell membrane to the nucleus, where they affect the transcription of target genes. Smad activation, subcellular distribution, and stability have been found to be intricately regulated and a broad array of transcription factors have been identified as Smad partners. Important activities of TGF-beta are its potent anti-mitogenic and pro-apoptotic effects that, at least in part, are mediated via Smad proteins. Escape from TGF-beta/Smad-induced growth inhibition and apoptosis is frequently observed in tumors. Certain Smads have been found to be mutated in specific types of cancer and gene ablation of particular Smads in mice has revealed increased rate of tumorigenesis. In late stage tumors, TGF-beta has been shown to function as a tumor promoter. TGF-beta can stimulate the de-differentiation of epithelial cells to malignant invasive and metastatic fibroblastic cells. Interestingly, TGF-beta may mediate these effects directly on tumor cells via subverted Smad-dependent and/or Smad-independent pathways. J. Cell. Physiol. 191: 1-16, 2002. (C) 2002 Wiley-Liss, Inc.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 230 条
  • [1] Induction of inhibitory Smad6 and Smad7 mRNA by TGF-β family members
    Afrakhte, M
    Morén, A
    Jossan, S
    Itoh, S
    Westermark, B
    Heldin, CH
    Heldin, NE
    ten Dijke, P
    [J]. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1998, 249 (02) : 505 - 511
  • [2] c-Ski acts as a transcriptional co-repressor in transforming growth factor-β signaling through interaction with Smads
    Akiyoshi, S
    Inoue, H
    Hanai, J
    Kusanagi, K
    Nemoto, N
    Miyazono, K
    Kawabata, M
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (49) : 35269 - 35277
  • [3] OVEREXPRESSION OF THE C-MYC ONCOPROTEIN BLOCKS THE GROWTH-INHIBITORY RESPONSE BUT IS REQUIRED FOR THE MITOGENIC EFFECTS OF TRANSFORMING GROWTH-FACTOR-BETA-1
    ALEXANDROW, MG
    KAWABATA, M
    AAKRE, M
    MOSES, HL
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (08) : 3239 - 3243
  • [4] TGF-β-induced repression of CBFA1 by Smad3 decreases cbfa1 and osteocalcin expression and inhibits osteoblast differentiation
    Alliston, T
    Choy, L
    Ducy, P
    Karsenty, G
    Derynck, R
    [J]. EMBO JOURNAL, 2001, 20 (09) : 2254 - 2272
  • [5] Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response
    Ashcroft, GS
    Yang, X
    Glick, AB
    Weinstein, M
    Letterio, JJ
    Mizel, DE
    Anzano, M
    Greenwell-Wild, T
    Wahl, SM
    Deng, CX
    Roberts, AB
    [J]. NATURE CELL BIOLOGY, 1999, 1 (05) : 260 - 266
  • [6] Smads as transcriptional co-modulators
    Attisano, L
    Wrana, JL
    [J]. CURRENT OPINION IN CELL BIOLOGY, 2000, 12 (02) : 235 - 243
  • [7] Phosphatidylinositol 3-kinase function is required for transforming growth factor β-mediated epithelial to mesenchymal transition and cell migration
    Bakin, AV
    Tomlinson, AK
    Bhowmick, NA
    Moses, HL
    Arteaga, CL
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (47) : 36803 - 36810
  • [8] Transforming growth factor-β1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism
    Bhowmick, NA
    Ghiassi, M
    Bakin, A
    Aakre, M
    Lundquist, CA
    Engel, ME
    Arteaga, CL
    Moses, HL
    [J]. MOLECULAR BIOLOGY OF THE CELL, 2001, 12 (01) : 27 - 36
  • [9] Bitzer M, 2000, GENE DEV, V14, P187
  • [10] Mechanisms of disease:: Role of transforming growth factor β in human disease.
    Blobe, GC
    Schiemann, WP
    Lodish, HF
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2000, 342 (18) : 1350 - 1358