Controlled-release of IGF-I and TGF-β1 in a photopolymerizing hydrogel for cartilage tissue engineering

被引:225
作者
Elisseeff, J
McIntosh, W
Fu, K
Blunk, T
Langer, R [1 ]
机构
[1] MIT, Harvard Mit Div Hlth Sci & Technol, Cambridge, MA 02139 USA
[2] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[3] Univ Regensburg, Dept Pharmaceut Technol, D-93040 Regensburg, Germany
关键词
D O I
10.1016/S0736-0266(01)00054-7
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Photopolymerizing hydrogel systems provide a method to encapsulate cells and implant materials in a minimally invasive manner. Controlled release of growth factors in the hydrogels may enhance the ability to engineer tissues. IGF-I and TGF-beta were loaded in PLGA microspheres using a double emulsion technique. 125 ng and 200 pg of active IGF-I and TGF-beta, respectively, as measured by ELISA, were released over 15 days. The growth factor containing microspheres were photoencapsulated with bovine articular chondrocytes in PEO-based hydrogels and incubated in vitro for two weeks. Statistically significant changes in glycosaminoglycan (GAG) production compared to control gels either without microspheres; or with blank spheres were observed after a 14 day incubation with IGF-I and IGF-I/TGF-beta microspheres combined, with a maximum density of 8.41 +/- 2.5% wet weight GAG. Total collagen density was low and decreased with the IGF-I/TGF-beta microspheres after two weeks incubation, but otherwise remained unchanged in all other experimental groups. Cell content increased 10-fold to 0.18 +/- 0.056 x 10(6) cells/mg wet weight and extracellular matrix (ECM) staining by H&E increased in hydrogels with IGF-I/TGF-beta microspheres. In conclusion, photoencapsulation of microspheres in PEO-based hydrogels provides a method to deliver molecules such as growth factors in porous hydrogel systems. (C) 2001 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1098 / 1104
页数:7
相关论文
共 25 条
[1]   Materials for protein delivery in tissue engineering [J].
Baldwin, SP ;
Saltzman, WM .
ADVANCED DRUG DELIVERY REVIEWS, 1998, 33 (1-2) :71-86
[2]   THE SOMATOMEDINS - INSULIN-LIKE GROWTH-FACTORS [J].
BAXTER, RC .
ADVANCES IN CLINICAL CHEMISTRY, 1986, 25 :49-115
[3]  
Behravesh E, 1999, CLIN ORTHOP RELAT R, pS118
[4]   Articular cartilage .1. Tissue design and chondrocyte-matrix interactions [J].
Buckwalter, JA ;
Mankin, HJ .
JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 1997, 79A (04) :600-611
[5]   CONTROLLED DELIVERY SYSTEMS FOR PROTEINS BASED ON POLY(LACTIC GLYCOLIC ACID) MICROSPHERES [J].
COHEN, S ;
YOSHIOKA, T ;
LUCARELLI, M ;
HWANG, LH ;
LANGER, R .
PHARMACEUTICAL RESEARCH, 1991, 8 (06) :713-720
[6]   Cellular response to transforming growth factor-beta 1 and basic fibroblast growth factor depends on release kinetics and extracellular matrix interactions [J].
Dinbergs, ID ;
Brown, L ;
Edelman, ER .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (47) :29822-29829
[7]  
Elisseeff J, 2000, J BIOMED MATER RES, V51, P164, DOI 10.1002/(SICI)1097-4636(200008)51:2<164::AID-JBM4>3.3.CO
[8]  
2-N
[9]   Transdermal photopolymerization of poly(ethylene oxide)-based injectable hydrogels for tissue-engineered cartilage [J].
Elisseeff, J ;
Anseth, K ;
Sims, D ;
McIntosh, W ;
Randolph, M ;
Yaremchuk, M ;
Langer, R .
PLASTIC AND RECONSTRUCTIVE SURGERY, 1999, 104 (04) :1014-1022
[10]   Transdermal photopolymerization for minimally invasive implantation [J].
Elisseeff, J ;
Anseth, K ;
Sims, D ;
McIntosh, W ;
Randolph, M ;
Langer, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (06) :3104-3107