Chromatin immunoprecipitation analysis fails to support the latency model for regulation of p53 DNA binding activity in vivo

被引:255
作者
Kaeser, MD [1 ]
Iggo, RD [1 ]
机构
[1] Swiss Inst Expt Canc Res, Oncogene Grp, CH-1066 Epalinges, Switzerland
关键词
D O I
10.1073/pnas.012283399
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
p53 can adopt two forms in vitro, a latent form that binds naked DNA poorly and an active form that binds DNA well. Conversion of the latent form to the active form is thought to occur by an allosteric mechanism induced by phosphorylation and acetylation. Despite the large differences in affinity produced by regulatory modifications in vitro, mutation of putative regulatory sites has not produced correspondingly large effects on transcription of p53 target genes in vivo. To determine whether genotoxic stress regulates DNA binding by p53 in vivo, we have performed quantitative chromatin immunoprecipitation (ChIP) assays on tumor and normal cell lines containing wildtype p53. ChIP recovers several hundredfold more p21 and MDM2 promoter DNA from p53 wild-type than p53-null cells, indicating that the assay is specific for p53. Genotoxic stress induces much smaller increases in chromatin precipitation, which are matched by changes in the p53 protein level. Thus, in the experimental systems tested, allosteric regulation of DNA binding is not a major level of regulation of p53 activity. The p53 target genes tested can be divided into a group showing high promoter occupancy in vivo (p21, MDM2, and PUMA) and a group giving substantially weaker or background p53 binding (bax, AIP1, and PIG3). Neither group shows selective recruitment of p53 to the promoter in cells undergoing apoptosis, indicating that the decision to undergo apoptosis or cell cycle arrest depends on other changes in the cell.
引用
收藏
页码:95 / 100
页数:6
相关论文
共 23 条
[1]  
Ashcroft M, 1999, MOL CELL BIOL, V19, P1751
[2]   DNA damage induced p53 stabilization: no indication for an involvement of p53 phosphorylation [J].
Blattner, C ;
Tobiasch, E ;
Litfen, M ;
Rahmsdorf, HJ ;
Herrlich, P .
ONCOGENE, 1999, 18 (09) :1723-1732
[3]   Disruption of p53 in human cancer cells alters the responses to therapeutic agents [J].
Bunz, F ;
Hwang, PM ;
Torrance, C ;
Waldman, T ;
Zhang, YG ;
Dillehay, L ;
Williams, J ;
Lengauer, C ;
Kinzler, KW ;
Vogelstein, B .
JOURNAL OF CLINICAL INVESTIGATION, 1999, 104 (03) :263-269
[4]   Requirement for p53 and p21 to sustain G2 arrest after DNA damage [J].
Bunz, F ;
Dutriaux, A ;
Lengauer, C ;
Waldman, T ;
Zhou, S ;
Brown, JP ;
Sedivy, JM ;
Kinzler, KW ;
Vogelstein, B .
SCIENCE, 1998, 282 (5393) :1497-1501
[5]   Phosphorylation of Ser-20 mediates stabilization of human p53 in response to DNA damage [J].
Chehab, NH ;
Malikzay, A ;
Stavridi, ES ;
Halazonetis, TD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (24) :13777-13782
[6]   p53 levels, functional domains, and DNA damage determine the extent of the apoptotic response of tumor cells [J].
Chen, XB ;
Ko, LJ ;
Jayaraman, L ;
Prives, C .
GENES & DEVELOPMENT, 1996, 10 (19) :2438-2451
[7]   CRYSTAL-STRUCTURE OF A P53 TUMOR-SUPPRESSOR DNA COMPLEX - UNDERSTANDING TUMORIGENIC MUTATIONS [J].
CHO, YJ ;
GORINA, S ;
JEFFREY, PD ;
PAVLETICH, NP .
SCIENCE, 1994, 265 (5170) :346-355
[8]   Transcriptional regulation by p53 through intrinsic DNA/chromatin binding and site-directed cofactor recruitment [J].
Espinosa, JM ;
Emerson, BM .
MOLECULAR CELL, 2001, 8 (01) :57-69
[9]   MUTATION OF CONSERVED DOMAIN-II ALTERS THE SEQUENCE SPECIFICITY OF DNA-BINDING BY THE P53 PROTEIN [J].
FREEMAN, J ;
SCHMIDT, S ;
SCHARER, E ;
IGGO, R .
EMBO JOURNAL, 1994, 13 (22) :5393-5400
[10]  
FUCHS B, 1995, ONCOGENE, V10, P789