On the mechanical stability of polymeric microcontainers functionalized with nanoparticles

被引:105
作者
Bedard, Matthieu F. [1 ,4 ]
Munoz-Javier, Almudena [2 ]
Mueller, Renate [1 ]
del Pino, Pablo [2 ]
Fery, Andreas [3 ]
Parak, Wolfgang J. [2 ]
Skirtach, Andre G. [1 ]
Sukhorukov, Gleb B. [4 ]
机构
[1] Max Planck Colloids & Interfaces, D-14424 Potsdam, Germany
[2] Univ Marburg, Fachbereich Phys, D-35037 Marburg, Germany
[3] Univ Bayreuth, D-95447 Bayreuth, Germany
[4] Queen Mary Univ London, Dept Mat, London E1 4NS, England
关键词
ATOMIC-FORCE MICROSCOPE; POLYELECTROLYTE MULTILAYER MICROCAPSULES; GOLD NANOPARTICLES; THERMAL-BEHAVIOR; CAPSULES; HEAT; ENCAPSULATION; PERMEABILITY; RELEASE; SENSORS;
D O I
10.1039/b812553h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present key factors that influence the mechanical stability of polyelectrolyte/nanoparticle composite microcontainers and their encapsulation behavior by thermal shrinkage. Poly(diallyldimethylammonium chloride) (PDADMAC), poly(styrenesulfonate) (PSS) microshells and citrate-stabilized gold nanoparticles are used. The presence of nanoparticles in the microshell renders the encapsulation process by heat-shrinking more difficult. The encapsulation efficiency is found to decrease as the concentration of material to be encapsulated increases. Increasing nanoparticle content in the microshell or the concentration of dextran increases the likelihood of getting fused and damaged capsules during encapsulation. On the other hand, mechanical studies show that doping microshells with gold nanoparticles significantly increases their stiffness and resistance to deformation. Internalization of capsules by cells supports that the incorporation of metal nanoparticles makes the shells more resistant to deformation. This work provides information of significant interest for the potential biomedical applications of polymeric microshells such as intracellular storage and delivery.
引用
收藏
页码:148 / 155
页数:8
相关论文
共 48 条
[1]   Gold nanorods: Synthesis and optical properties [J].
Alekseeva, A. V. ;
Bogatyrev, V. A. ;
Khlebtsov, B. N. ;
Mel'nikov, A. G. ;
Dykman, L. A. ;
Khlebtsov, N. G. .
COLLOID JOURNAL, 2006, 68 (06) :661-678
[2]   Optically driven encapsulation using novel polymeric hollow shells containing an azobenzene polymer [J].
Bedard, Matthieu ;
Skirtach, Andre G. ;
Sukhorukov, Gleb. B. .
MACROMOLECULAR RAPID COMMUNICATIONS, 2007, 28 (15) :1517-1521
[3]   Toward self-assembly of nanoparticles on polymeric microshells:: Near-IR release and permeability [J].
Bedard, Matthieu F. ;
Braun, Dieter ;
Sukhorukov, Gleb B. ;
Skirtach, Andre G. .
ACS NANO, 2008, 2 (09) :1807-1816
[4]   MEASURING ELECTROSTATIC, VANDERWAALS, AND HYDRATION FORCES IN ELECTROLYTE-SOLUTIONS WITH AN ATOMIC FORCE MICROSCOPE [J].
BUTT, HJ .
BIOPHYSICAL JOURNAL, 1991, 60 (06) :1438-1444
[5]   Intracellularly degradable polyelectrolyte microcapsules [J].
De Geest, BG ;
Vandenbroucke, RE ;
Guenther, AM ;
Sukhorukov, GB ;
Hennink, WE ;
Sanders, NN ;
Demeester, J ;
De Smedt, SC .
ADVANCED MATERIALS, 2006, 18 (08) :1005-+
[6]   In vivo cellular uptake, degradation, and biocompatibility of polyelectrolyte microcapsules [J].
De Koker, Stefaan ;
De Geest, Bruno G. ;
Cuvelier, Claude ;
Ferdinande, Liesbeth ;
Deckers, Wies ;
Hennink, Wim E. ;
De Smedt, Stefaan ;
Mertens, Nico .
ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (18) :3754-3763
[7]   Fuzzy nanoassemblies: Toward layered polymeric multicomposites [J].
Decher, G .
SCIENCE, 1997, 277 (5330) :1232-1237
[8]   PH-responsive properties of hollow polyelectrolyte microcapsules templated on various cores [J].
Déjugnat, C ;
Sukhorukov, GB .
LANGMUIR, 2004, 20 (17) :7265-7269
[9]  
Donath E, 1998, ANGEW CHEM INT EDIT, V37, P2202, DOI 10.1002/(SICI)1521-3773(19980904)37:16<2201::AID-ANIE2201>3.0.CO
[10]  
2-E