Air separation by single wall carbon nanotubes: Mass transport and kinetic selectivity

被引:34
作者
Arora, G [1 ]
Sandler, SI [1 ]
机构
[1] Univ Delaware, Dept Chem Engn, Ctr Mol & Engn Thermodynam, Newark, DE 19716 USA
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.2166373
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Mass transport of pure nitrogen, pure oxygen, and their mixture (air) has been studied at 100 K in a single wall carbon nanotube of 12.53 A diameter. Phenomenological coefficients, and self- and corrected diffusivities are calculated using molecular-dynamics simulations, and transport diffusivities are obtained by combining these results with thermodynamic factors obtained from previous grand canonical Monte Carlo simulations [G. Arora and S. I. Sandler, J. Chem. Phys. 123, 044705 (2005)]. For mixtures, cross-term diffusion coefficients are found to be of similar order of magnitude as main-term diffusion coefficients over the entire range of pressure studied. These results are then combined with a continuum description of mass transport to determine the ideal and kinetic separation factors for a nanotube membrane. High permeances are observed for both pure components and the mixture inside the nanotubes. The concentration profiles, diffusivity profiles, and membrane fluxes are calculated, and it is demonstrated that by carefully adjusting the upstream and downstream pressures, a good kinetic selectivity can be achieved for air separation using single wall carbon nanotubes.
引用
收藏
页数:11
相关论文
共 38 条
[1]   Diffusivities of Ar and Ne in carbon nanotubes [J].
Ackerman, DM ;
Skoulidas, AI ;
Sholl, DS ;
Johnson, JK .
MOLECULAR SIMULATION, 2003, 29 (10-11) :677-684
[2]  
Allen M. P., 2017, Computer Simulation of Liquids, VSecond, DOI [10.1093/oso/9780198803195.001.0001, DOI 10.1093/OSO/9780198803195.001.0001]
[3]   Air separation by single wall carbon nanotubes: Thermodynamics and adsorptive selectivity [J].
Arora, G ;
Sandler, SI .
JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (04)
[4]   Adsorption and diffusion of molecular nitrogen in single wall carbon nanotubes [J].
Arora, G ;
Wagner, NJ ;
Sandler, SI .
LANGMUIR, 2004, 20 (15) :6268-6277
[5]   Permeation characteristics of a metal-supported silicalite-1 zeolite membrane [J].
Bakker, WJW ;
Kapteijn, F ;
Poppe, J ;
Moulijn, JA .
JOURNAL OF MEMBRANE SCIENCE, 1996, 117 (1-2) :57-78
[6]   INTERACTIONS OF DIATOMIC-MOLECULES WITH GRAPHITE [J].
BOJAN, MJ ;
STEELE, WA .
LANGMUIR, 1987, 3 (06) :1123-1127
[7]   A comparison of atomistic simulations and experimental measurements of light gas permeation through zeolite membranes [J].
Bowen, TC ;
Falconer, JL ;
Noble, RD ;
Skoulidas, AI ;
Sholl, DS .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2002, 41 (06) :1641-1650
[8]   Rapid diffusion of CH4/H2 mixtures in single-walk carbon nanotubes [J].
Chen, HB ;
Sholl, DS .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (25) :7778-7779
[9]  
*EPAPS, EJCPSA6124708605 EPA, P66702
[10]  
Frenkel D, 2002, Understanding Molecular Simulation: From Algorithms to Applications