Nonrelativistic limit in the energy space for nonlinear Klein-Gordon equations

被引:118
作者
Machihara, S [1 ]
Nakanishi, K
Ozawa, T
机构
[1] Hokkaido Univ, Dept Math, Sapporo, Hokkaido 0600810, Japan
[2] Kobe Univ, Dept Math, Kobe, Hyogo 6578501, Japan
关键词
D O I
10.1007/s002080200008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the nonrelativistic limit of the Cauchy problem for the nonlinear Klein-Gordon equation and prove that any finite energy solution converges to the corresponding solution of the nonlinear Schrodinger equation in the energy space, after the infinite oscillation in time is removed. We also derive the optimal rate of convergence in L-2.
引用
收藏
页码:603 / 621
页数:19
相关论文
共 11 条
[1]  
Bergh J., 1976, INTERPOLATION SPACES
[2]   Global wellposedness of defocusing critical nonlinear Schrodinger equation in the radial case [J].
Bourgain, J .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (01) :145-171
[3]  
GINIBRE J, 1985, ANN I H POINCARE-PHY, V43, P399
[4]   GENERALIZED STRICHARTZ INEQUALITIES FOR THE WAVE-EQUATION [J].
GINIBRE, J ;
VELO, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 133 (01) :50-68
[5]   THE GLOBAL CAUCHY-PROBLEM FOR THE NON-LINEAR KLEIN-GORDON EQUATION [J].
GINIBRE, J ;
VELO, G .
MATHEMATISCHE ZEITSCHRIFT, 1985, 189 (04) :487-505
[6]   THE GLOBAL CAUCHY-PROBLEM FOR THE NON-LINEAR SCHRODINGER-EQUATION REVISITED [J].
GINIBRE, J ;
VELO, G .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1985, 2 (04) :309-327
[7]   Endpoint Strichartz estimates [J].
Keel, M ;
Tao, T .
AMERICAN JOURNAL OF MATHEMATICS, 1998, 120 (05) :955-980
[8]  
Machihara S., FUNKCIAL EKVAC, V44, P243
[10]   CONVOLUTION OPERATORS AND (P, Q) SPACES [J].
ONEIL, R .
DUKE MATHEMATICAL JOURNAL, 1963, 30 (01) :129-&