GENERALIZED STRICHARTZ INEQUALITIES FOR THE WAVE-EQUATION

被引:442
作者
GINIBRE, J
VELO, G
机构
[1] Laboratoire de Physique Théorique et Hautes Energies, Université de Paris-Sud, 91405 Orsay Cedex
[2] Laboratoire associé au Centre National de la Recherche Scientifique
[3] Dipartimento di Fisica, Università di Bologna, INFN, Sezione di Bologna
关键词
D O I
10.1006/jfan.1995.1119
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We make a synthetic exposition of the generalized Strichartz inequalities for the wave equation obtained in [6] together with the limiting cases recently obtained in [13] with as simple proofs as possible. The proofs combine stationary phase estimates, dyadic decompositions, the Hardy-Littlewood inequality or the Holder inequality in time, and abstract duality and interpolation arguments. (C) 1995 Academic Press, Inc.
引用
收藏
页码:50 / 68
页数:19
相关论文
共 23 条
[1]  
[Anonymous], 1983, MONOGRAPHS MATH
[2]  
Bergh J., 1976, INTERPOLATION SPACES, V223
[3]   LP-LP' ESTIMATES FOR WAVE-EQUATION [J].
BRENNER, P .
MATHEMATISCHE ZEITSCHRIFT, 1975, 145 (03) :251-254
[4]  
GINIBRE J, 1985, J MATH PURE APPL, V64, P363
[5]   THE GLOBAL CAUCHY-PROBLEM FOR THE CRITICAL NONLINEAR-WAVE EQUATION [J].
GINIBRE, J ;
SOFFER, A ;
VELO, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1992, 110 (01) :96-130
[6]   SCATTERING-THEORY IN THE ENERGY SPACE FOR A CLASS OF NON-LINEAR WAVE-EQUATIONS [J].
GINIBRE, J ;
VELO, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 123 (04) :535-573
[7]   THE GLOBAL CAUCHY-PROBLEM FOR THE NON-LINEAR KLEIN-GORDON EQUATION [J].
GINIBRE, J ;
VELO, G .
MATHEMATISCHE ZEITSCHRIFT, 1985, 189 (04) :487-505
[8]  
GINIBRE J, 1987, ANN I H POINCARE-PHY, V47, P263
[9]   SMOOTHING PROPERTIES AND RETARDED ESTIMATES FOR SOME DISPERSIVE EVOLUTION-EQUATIONS [J].
GINIBRE, J ;
VELO, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 144 (01) :163-188
[10]   ON LEBESGUE SPACE ESTIMATES FOR THE WAVE-EQUATION [J].
HARMSE, J .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1990, 39 (01) :229-248