Julia set describes quantum tunnelling in the presence of chaos

被引:38
作者
Shudo, A
Ishii, Y
Ikeda, KS
机构
[1] Tokyo Metropolitan Univ, Dept Phys, Tokyo 1920397, Japan
[2] Kyushu Univ, Dept Math, Fukuoka 8128581, Japan
[3] Ritsumeikan Univ, Fac Sci & Engn, Noji, Kusatsu 5250055, Japan
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2002年 / 35卷 / 17期
关键词
D O I
10.1088/0305-4470/35/17/101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We find that characteristics of quantum tunnelling in the presence of chaos can be regarded as a manifestation of the Julia set of the complex dynamical system. Several numerical pieces of evidence for the standard map, together with a rigorous statement for the Henon map, are presented, demonstrating that the complex classical paths which contribute to the semiclassical propagator are dense in the Julia set. Chaotic tunnelling can thus be characterized by the transitivity of the dynamics and high density of the trajectories on the Julia set.
引用
收藏
页码:L225 / L231
页数:7
相关论文
共 23 条
[1]   POLYNOMIAL DIFFEOMORPHISMS OF C-2 - CURRENTS, EQUILIBRIUM MEASURE AND HYPERBOLICITY [J].
BEDFORD, E ;
SMILLIE, J .
INVENTIONES MATHEMATICAE, 1991, 103 (01) :69-99
[2]   POLYNOMIAL DIFFEOMORPHISMS OF C2 .3. ERGODICITY, EXPONENTS AND ENTROPY OF THE EQUILIBRIUM MEASURE [J].
BEDFORD, E ;
SMILLIE, J .
MATHEMATISCHE ANNALEN, 1992, 294 (03) :395-420
[3]  
Bedford E., 1991, J. Am. Math. Soc., V4, P657
[4]   DYNAMIC QUASIDEGENERACIES AND SEPARATION OF REGULAR AND IRREGULAR QUANTUM LEVELS [J].
BOHIGAS, O ;
TOMSOVIC, S ;
ULLMO, D .
PHYSICAL REVIEW LETTERS, 1990, 64 (13) :1479-1482
[5]   FATE OF FALSE VACUUM .2. 1ST QUANTUM CORRECTIONS [J].
CALLAN, CG ;
COLEMAN, S .
PHYSICAL REVIEW D, 1977, 16 (06) :1762-1768
[6]   Complex periodic orbits and tunneling in chaotic potentials [J].
Creagh, SC ;
Whelan, ND .
PHYSICAL REVIEW LETTERS, 1996, 77 (25) :4975-4979
[7]   Homoclinic structure controls chaotic tunneling [J].
Creagh, SC ;
Whelan, ND .
PHYSICAL REVIEW LETTERS, 1999, 82 (26) :5237-5240
[8]  
CREAGH SC, 1998, TUNNELING COMPLEX SY, P103
[9]   QUANTUM DYNAMICAL TUNNELING IN BOUND-STATES [J].
DAVIS, MJ ;
HELLER, EJ .
JOURNAL OF CHEMICAL PHYSICS, 1981, 75 (01) :246-254
[10]  
Devaney R, 1987, An introduction to chaotic dynamical systems, DOI 10.2307/3619398