Cell specification during embryogenesis of the model system Caenorhabditis elegans involves a combination of inductive and autonomous mechanisms. We have begun to study the development of other nematodes to investigate how well cell-specification mechanisms are preserved among closely related species. Here we report that the embryo of the soil nematode Acrobeloides nanus expresses a so far undescribed regulative potential. When, for instance, the first somatic founder cell AB is eliminated it is replaced by its posterior neighbor EMS, which in turn is replaced by the C cell. This allows-different from C. elegans-the development of partial embryos up to hatching and sometimes to fertile adults. Thus, early somatic blastomeres in A. nanus are multipotent, each being capable of giving rise to more than one somatic founder cell. Lost germ-line cells, however, are not replaced. A model is presented, according to which in A. nanus cellular identities are assigned by specific reciprocal inhibitory cell-cell interactions absent in C, elegans. Differences and similarities in cell specification between the two species are discussed and related to different developmental strategies. (C) 1999 Academic Press.